Back to index

4.12.7

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.59

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

Overview 

HyperShift came to life to serve multiple goals, some are main near-term, some are secondary that serve well long-term. 

Main Goals for hosted control planes (HyperShift)

  • Optimize OpenShift for Cost/footprint/ which improves our competitive stance against the *KSes
  • Establish separation of concerns which makes it more resilient for SRE to manage their workload clusters (be it security, configuration management, etc).
  • Simplify and enhance multi-cluster management experience especially since multi-cluster is becoming an industry need nowadays. 

Secondary Goals

HyperShift opens up doors to penetrate the market. HyperShift enables true hybrid (CP and Workers decoupled, mixed IaaS, mixed Arch,...). An architecture that opens up more options to target new opportunities in the cloud space. For more details on this one check: Hosted Control Planes (aka HyperShift) Strategy [Live Document]

 

Hosted Control Planes (HyperShift) Map 

To bring hosted control planes to our customers, we need the means to ship it. Today MCE is how HyperShift shipped, and installed so that customers can use it. There are two main customers for hosted-control-planes: 

 

  • Self-managed: In that case, Red Hat would provide hosted control planes as a service that is managed and SREed by the customer for their tenants (hence “self”-managed). In this management model, our external customers are the direct consumers of the multi-cluster control plane as a servie. Once MCE is installed, they can start to self-service dedicated control planes. 

 

  • Managed: This is OpenShift as a managed service, today we only “manage” the CP, and share the responsibility for other system components, more info here. To reduce management costs incurred by service delivery organizations which translates to operating profit (by reducing variable costs per control-plane), as well as to improve user experience, lower platform overhead (allow customers to focus mostly on writing applications and not concern themselves with infrastructure artifacts), and improve the cluster provisioning experience. HyperShift is shipped via MCE, and delivered to Red Hat managed SREs (same consumption route). However, for managed services, additional tooling needs to be refactored to support the new provisioning path. Furthermore, unlike self-managed where customers are free to bring their own observability stack, Red Hat managed SREs need to observe the managed fleet to ensure compliance with SLOs/SLIs/…

 

If you have noticed, MCE is the delivery mechanism for both management models. The difference between managed and self-managed is the consumer persona. For self-managed, it's the customer SRE for managed its the RH SRE

High-level Requirements

For us to ship HyperShift in the product (as hosted control planes) in either management model, there is a necessary readiness checklist that we need to satisfy. Below are the high-level requirements needed before GA: 

 

  • Hosted control planes fits well with our multi-cluster story (with MCE)
  • Hosted control planes APIs are stable for consumption  
  • Customers are not paying for control planes/infra components.  
  • Hosted control planes has an HA and a DR story
  • Hosted control planes is in parity with top-level add-on operators 
  • Hosted control planes reports metrics on usage/adoption
  • Hosted control planes is observable  
  • HyperShift as a backend to managed services is fully unblocked.

 

Please also have a look at our What are we missing in Core HyperShift for GA Readiness? doc. 

Hosted control planes fits well with our multi-cluster story

Multi-cluster is becoming an industry need today not because this is where trend is going but because it’s the only viable path today to solve for many of our customer’s use-cases. Below is some reasoning why multi-cluster is a NEED:

 

 

As a result, multi-cluster management is a defining category in the market where Red Hat plays a key role. Today Red Hat solves for multi-cluster via RHACM and MCE. The goal is to simplify fleet management complexity by providing a single pane of glass to observe, secure, police, govern, configure a fleet. I.e., the operand is no longer one cluster but a set, a fleet of clusters. 

HyperShift logically centralized architecture, as well as native separation of concerns and superior cluster lifecyle management experience, makes it a great fit as the foundation of our multi-cluster management story. 

Thus the following stories are important for HyperShift: 

  • When lifecycling OpenShift clusters (for any OpenShift form factor) on any of the supported providers from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to use a consistent UI so I can manage and operate (observe, govern,...) a fleet of clusters.
  • I want to specify HA constraints (e.g., deploy my clusters in different regions) while ensuring acceptable QoS (e.g., latency boundaries) to ensure/reduce any potential downtime for my workloads. 
  • When operating OpenShift clusters (for any OpenShift form factor) on any of the supported provider from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to backup any critical data so I am able to restore them in case of hosting service cluster (management cluster) failure. 

Refs:

Hosted control planes APIs are stable for consumption.

 

HyperShift is the core engine that will be used to provide hosted control-planes for consumption in managed and self-managed. 

 

Main user story:  When life cycling clusters as a cluster service consumer via HyperShift core APIs, I want to use a stable/backward compatible API that is less susceptible to future changes so I can provide availability guarantees. 

 

Ref: What are we missing in Core HyperShift for GA Readiness?

Customers are not paying for control planes/infra components. 

 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumptions

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

HyperShift - proposed cuts from data plane

HyperShift has an HA and a DR story

When operating OpenShift clusters (for any OpenShift form factor) from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin) I want to be able to migrate CPs from one hosting service cluster to another:

  • as means for disaster recovery in the case of total failure
  • so that scaling pressures on a management cluster can be mitigated or a management cluster can be decommissioned.

More information: 

 

Hosted control planes reports metrics on usage/adoption

To understand usage patterns and inform our decision making for the product. We need to be able to measure adoption and assess usage.

See Hosted Control Planes (aka HyperShift) Strategy [Live Document]

Hosted control plane is observable  

Whether it's managed or self-managed, it’s pertinent to report health metrics to be able to create meaningful Service Level Objectives (SLOs), alert of failure to meet our availability guarantees. This is especially important for our managed services path. 

HyperShift is in parity with top-level add-on operators

https://issues.redhat.com/browse/OCPPLAN-8901 

Unblock HyperShift as a backend to managed services

HyperShift for managed services is a strategic company goal as it improves usability, feature, and cost competitiveness against other managed solutions, and because managed services/consumption-based cloud services is where we see the market growing (customers are looking to delegate platform overhead). 

 

We should make sure our SD milestones are unblocked by the core team. 

 

Note 

This feature reflects HyperShift core readiness to be consumed. When all related EPICs and stories in this EPIC are complete HyperShift can be considered ready to be consumed in GA form. This does not describe a date but rather the readiness of core HyperShift to be consumed in GA form NOT the GA itself.

- GA date for self-managed will be factoring in other inputs such as adoption, customer interest/commitment, and other factors. 
- GA dates for ROSA-HyperShift are on track, tracked in milestones M1-7 (have a look at https://issues.redhat.com/browse/OCPPLAN-5771

Epic Goal*

The goal is to split client certificate trust chains from the global Hypershift root CA.

 
Why is this important? (mandatory)

This is important to:

  • assure a workload can be run on any kind of OCP flavor
  • reduce the blast radius in case of a sensitive material leak
  • separate trust to allow more granular control over client certificate authentication

 
Scenarios (mandatory) 

Provide details for user scenarios including actions to be performed, platform specifications, and user personas.  

  1. I would like to be able to run my workloads on any OpenShift-like platform.
    My workloads allow components to authenticate using client certificates based
    on a trust bundle that I am able to retrieve from the cluster.
  1. I don't want my users to have access to any CA bundle that would allow them
    to trust a random certificate from the cluster for client certificate authentication.

 
Dependencies (internal and external) (mandatory)

Hypershift team needs to provide us with code reviews and merge the changes we are to deliver

Contributing Teams(and contacts) (mandatory) 

  • Development - OpenShift Auth, Hypershift
  • Documentation -OpenShift Auth Docs team
  • QE - OpenShift Auth QE
  • PX - I have no idea what PX is
  • Others - others

Acceptance Criteria (optional)

The serviceaccount CA bundle automatically injected to all pods cannot be used to authenticate any client certificate generated by the control-plane.

Drawbacks or Risk (optional)

Risk: there is a throbbing time pressure as this should be delivered before first stable Hypershift release

Done - Checklist (mandatory)

  • CI Testing -  Basic e2e automationTests are merged and completing successfully
  • Documentation - Content development is complete.
  • QE - Test scenarios are written and executed successfully.
  • Technical Enablement - Slides are complete (if requested by PLM)
  • Engineering Stories Merged
  • All associated work items with the Epic are closed
  • Epic status should be “Release Pending” 

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

Description of problem:

Create Loadbalancer type service within the OCP 4.11.x OVNKubernetes cluster to expose the api server endpoint, the service does not response for normal oc request. 
But some of them are working, like "oc whoami", "oc get --raw /api"

Version-Release number of selected component (if applicable):

4.11.8 with OVNKubernetes

How reproducible:

always

Steps to Reproduce:

1. Setup openshift cluster 4.11 on AWS with OVNKubernetes as the default network
2. Create the following service under openshift-kube-apiserver namespace to expose the api
----
apiVersion: v1
kind: Service
metadata:
  annotations:
    service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "1800"
  finalizers:
  - service.kubernetes.io/load-balancer-cleanup
  name: test-api
  namespace: openshift-kube-apiserver
spec:
  allocateLoadBalancerNodePorts: true
  externalTrafficPolicy: Cluster
  internalTrafficPolicy: Cluster
  ipFamilies:
  - IPv4
  ipFamilyPolicy: SingleStack
  loadBalancerSourceRanges:
  - <my_ip>/32
  ports:
  - nodePort: 31248
    port: 6443
    protocol: TCP
    targetPort: 6443
  selector:
    apiserver: "true"
    app: openshift-kube-apiserver
  sessionAffinity: None
  type: LoadBalancer

3. Setup the DNS resolution for the access
xxx.mydomain.com ---> <elb-auto-generated-dns>

4. Try to access the cluster api via the service above by updating the kubeconfig to use the custom dns name

Actual results:

No response from the server side.

$ time oc get node -v8
I1025 08:29:10.284069  103974 loader.go:375] Config loaded from file:  bmeng.kubeconfig
I1025 08:29:10.294017  103974 round_trippers.go:420] GET https://rh-api.bmeng-ccs-ovn.3o13.s1.devshift.org:6443/api/v1/nodes?limit=500
I1025 08:29:10.294035  103974 round_trippers.go:427] Request Headers:
I1025 08:29:10.294043  103974 round_trippers.go:431]     Accept: application/json;as=Table;v=v1;g=meta.k8s.io,application/json;as=Table;v=v1beta1;g=meta.k8s.io,application/json
I1025 08:29:10.294052  103974 round_trippers.go:431]     User-Agent: oc/openshift (linux/amd64) kubernetes/e40bd2d
I1025 08:29:10.365119  103974 round_trippers.go:446] Response Status: 200 OK in 71 milliseconds
I1025 08:29:10.365142  103974 round_trippers.go:449] Response Headers:
I1025 08:29:10.365148  103974 round_trippers.go:452]     Audit-Id: 83b9d8ae-05a4-4036-bff6-de371d5bec12
I1025 08:29:10.365155  103974 round_trippers.go:452]     Cache-Control: no-cache, private
I1025 08:29:10.365161  103974 round_trippers.go:452]     Content-Type: application/json
I1025 08:29:10.365167  103974 round_trippers.go:452]     X-Kubernetes-Pf-Flowschema-Uid: 2abc2e2d-ada3-4cb8-a86f-235df3a4e214
I1025 08:29:10.365173  103974 round_trippers.go:452]     X-Kubernetes-Pf-Prioritylevel-Uid: 02f7a188-43c7-4827-af58-5ebe861a1891
I1025 08:29:10.365179  103974 round_trippers.go:452]     Date: Tue, 25 Oct 2022 08:29:10 GMT
^C
real    17m4.840s
user    0m0.567s
sys    0m0.163s


However, it has the correct response if using --raw to request, eg:
$ oc get --raw /api/v1  --kubeconfig bmeng.kubeconfig 
{"kind":"APIResourceList","groupVersion":"v1","resources":[{"name":"bindings","singularName":"","namespaced":true,"kind":"Binding","verbs":["create"]},{"name":"componentstatuses","singularName":"","namespaced":false,"kind":"ComponentStatus","verbs":["get","list"],"shortNames":["cs"]},{"name":"configmaps","singularName":"","namespaced":true,"kind":"ConfigMap","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["cm"],"storageVersionHash":"qFsyl6wFWjQ="},{"name":"endpoints","singularName":"","namespaced":true,"kind":"Endpoints","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["ep"],"storageVersionHash":"fWeeMqaN/OA="},{"name":"events","singularName":"","namespaced":true,"kind":"Event","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["ev"],"storageVersionHash":"r2yiGXH7wu8="},{"name":"limitranges","singularName":"","namespaced":true,"kind":"LimitRange","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["limits"],"storageVersionHash":"EBKMFVe6cwo="},{"name":"namespaces","singularName":"","namespaced":false,"kind":"Namespace","verbs":["create","delete","get","list","patch","update","watch"],"shortNames":["ns"],"storageVersionHash":"Q3oi5N2YM8M="},{"name":"namespaces/finalize","singularName":"","namespaced":false,"kind":"Namespace","verbs":["update"]},{"name":"namespaces/status","singularName":"","namespaced":false,"kind":"Namespace","verbs":["get","patch","update"]},{"name":"nodes","singularName":"","namespaced":false,"kind":"Node","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["no"],"storageVersionHash":"XwShjMxG9Fs="},{"name":"nodes/proxy","singularName":"","namespaced":false,"kind":"NodeProxyOptions","verbs":["create","delete","get","patch","update"]},{"name":"nodes/status","singularName":"","namespaced":false,"kind":"Node","verbs":["get","patch","update"]},{"name":"persistentvolumeclaims","singularName":"","namespaced":true,"kind":"PersistentVolumeClaim","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["pvc"],"storageVersionHash":"QWTyNDq0dC4="},{"name":"persistentvolumeclaims/status","singularName":"","namespaced":true,"kind":"PersistentVolumeClaim","verbs":["get","patch","update"]},{"name":"persistentvolumes","singularName":"","namespaced":false,"kind":"PersistentVolume","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["pv"],"storageVersionHash":"HN/zwEC+JgM="},{"name":"persistentvolumes/status","singularName":"","namespaced":false,"kind":"PersistentVolume","verbs":["get","patch","update"]},{"name":"pods","singularName":"","namespaced":true,"kind":"Pod","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["po"],"categories":["all"],"storageVersionHash":"xPOwRZ+Yhw8="},{"name":"pods/attach","singularName":"","namespaced":true,"kind":"PodAttachOptions","verbs":["create","get"]},{"name":"pods/binding","singularName":"","namespaced":true,"kind":"Binding","verbs":["create"]},{"name":"pods/ephemeralcontainers","singularName":"","namespaced":true,"kind":"Pod","verbs":["get","patch","update"]},{"name":"pods/eviction","singularName":"","namespaced":true,"group":"policy","version":"v1","kind":"Eviction","verbs":["create"]},{"name":"pods/exec","singularName":"","namespaced":true,"kind":"PodExecOptions","verbs":["create","get"]},{"name":"pods/log","singularName":"","namespaced":true,"kind":"Pod","verbs":["get"]},{"name":"pods/portforward","singularName":"","namespaced":true,"kind":"PodPortForwardOptions","verbs":["create","get"]},{"name":"pods/proxy","singularName":"","namespaced":true,"kind":"PodProxyOptions","verbs":["create","delete","get","patch","update"]},{"name":"pods/status","singularName":"","namespaced":true,"kind":"Pod","verbs":["get","patch","update"]},{"name":"podtemplates","singularName":"","namespaced":true,"kind":"PodTemplate","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"storageVersionHash":"LIXB2x4IFpk="},{"name":"replicationcontrollers","singularName":"","namespaced":true,"kind":"ReplicationController","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["rc"],"categories":["all"],"storageVersionHash":"Jond2If31h0="},{"name":"replicationcontrollers/scale","singularName":"","namespaced":true,"group":"autoscaling","version":"v1","kind":"Scale","verbs":["get","patch","update"]},{"name":"replicationcontrollers/status","singularName":"","namespaced":true,"kind":"ReplicationController","verbs":["get","patch","update"]},{"name":"resourcequotas","singularName":"","namespaced":true,"kind":"ResourceQuota","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["quota"],"storageVersionHash":"8uhSgffRX6w="},{"name":"resourcequotas/status","singularName":"","namespaced":true,"kind":"ResourceQuota","verbs":["get","patch","update"]},{"name":"secrets","singularName":"","namespaced":true,"kind":"Secret","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"storageVersionHash":"S6u1pOWzb84="},{"name":"serviceaccounts","singularName":"","namespaced":true,"kind":"ServiceAccount","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["sa"],"storageVersionHash":"pbx9ZvyFpBE="},{"name":"serviceaccounts/token","singularName":"","namespaced":true,"group":"authentication.k8s.io","version":"v1","kind":"TokenRequest","verbs":["create"]},{"name":"services","singularName":"","namespaced":true,"kind":"Service","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["svc"],"categories":["all"],"storageVersionHash":"0/CO1lhkEBI="},{"name":"services/proxy","singularName":"","namespaced":true,"kind":"ServiceProxyOptions","verbs":["create","delete","get","patch","update"]},{"name":"services/status","singularName":"","namespaced":true,"kind":"Service","verbs":["get","patch","update"]}]}
 

Expected results:

The normal oc request should be working.

Additional info:

There is no such issue for clusters with openshift-sdn with the same OpenShift version and same LoadBalancer service.

We suspected that it might be related to the MTU setting, but this cannot explain why OpenShiftSDN works well.

Another thing might be related is that the OpenShiftSDN is using iptables for service loadbalancing and OVN is dealing that within the OVN services.

 

Please let me know if any debug log/info is needed.

This is a clone of issue OCPBUGS-948. The following is the description of the original issue:

Description of problem:

OLM is setting the "openshift.io/scc" label to "anyuid" on several namespaces:

https://github.com/openshift/operator-framework-olm/blob/d817e09c2565b825afd8bfc9bb546eeff28e47e7/manifests/0000_50_olm_00-namespace.yaml#L23
https://github.com/openshift/operator-framework-olm/blob/d817e09c2565b825afd8bfc9bb546eeff28e47e7/manifests/0000_50_olm_00-namespace.yaml#L8

this label has no effect and will lead to confusion.  It should be set to emptystring for now (removing it entirely will have no effect on upgraded clusters because the CVO does not remove deleted labels, so the next best thing is to clear the value).

For bonus points, OLM should remove the label entirely from the manifest and add migration logic to remove the existing label from these namespaces to handle upgraded clusters that already have it.

Version-Release number of selected component (if applicable):

Not sure how long this has been an issue, but fixing it in 4.12+ should be sufficient.

How reproducible:

always

Steps to Reproduce:

1. install cluster
2. examine namespace labels

Actual results:

label is present

Expected results:


ideally label should not be present, but in the short term setting it to emptystring is the quick fix and is better than nothing.

Description of problem:

In OCP 4.9, the package-server-manager was introduced to manage the packageserver CSV. However, when OCP 4.8 in upgraded to 4.9, the packageserver stays stuck in v0.17.0, which is the version in OCP 4.8, and v0.18.3 does not roll out, which is the version in OCP 4.9

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Install OCP 4.8

2. Upgrade to OCP 4.9 

$ oc get clusterversion 
NAME      VERSION                             AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.8.0-0.nightly-2022-08-31-160214   True        True          50m     Working towards 4.9.47: 619 of 738 done (83% complete)

$ oc get clusterversion 
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.9.47    True        False         4m26s   Cluster version is 4.9.47
 

Actual results:

Check packageserver CSV. It's in v0.17.0 

$ oc get csv  NAME            DISPLAY          VERSION   REPLACES   PHASE packageserver   Package Server   0.17.0               Succeeded 

Expected results:

packageserver CSV is at 0.18.3 

Additional info:

packageserver CSV version in 4.8: https://github.com/openshift/operator-framework-olm/blob/release-4.8/manifests/0000_50_olm_15-packageserver.clusterserviceversion.yaml#L12

packageserver CSV version in 4.9: https://github.com/openshift/operator-framework-olm/blob/release-4.9/pkg/manifests/csv.yaml#L8

Description of problem:

Alert actions are not triggering modal from where storage cluster can be expanded.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

1/1

Steps to Reproduce:

1. Fill up a storage cluster to 80%
2. Alert is seen in cluster dashboard.
3. Click the Add Capacity button

Actual results:

Modal is not launched.

Expected results:

Modal should be launched.

Additional info:

 

Description of problem:

If a customer creates a machine with a networks section like this

networks:
- filter: {}
  noAllowedAddressPairs: false
  subnets:
  - filter: {}
    uuid: primary-subnet-uuid
- filter: {}
  noAllowedAddressPairs: true
  subnets:
  - filter: {}
    uuid: other-subnet-uuid
primarySubnet: primary-subnet-uuid

Then all the ports are created without the allowed address pairs.

Doing some research in the source code, I have found that:
- For each entry on the networks: section, networks are filtered as per its filter: section[1]
- Then, if the subnets: section of the network entry is not empty, for each of the network IDs found above[2], 2 things are done that are relevant for this situatoin:
  - The net ID is saved on a netsWithoutAllowedAddressPairs[3]. That map is later checked while creating any port[4].
  - For each subnet entry that matches the network ID, a port is created[5].

So, the problematic behavior happens due to the following:

- Both entries in the networks array have empty filters. This means that both entries selected all the neutron networks.
- This configuration results in one port per subnet as expected because, in the later traversal of the subnets array of each entry[5], it is filtering by subnet and creating a single port as expected.
- However, the entry with "noAllowedAddressPairs: true" is selecting all the neutron networks, so it adds all of them to the netsWithoutAllowedAddressPairs map[3], regardless of the subnets filtering.
- As all the networks are in noAllowedAddressPairs: true array, all the ports created for the VM have their allowed address pairs removed[4].

Why do we consider this behavior undesired?

I understand that, if we create a port for a network that has no allowed pairs, we create all the other ports in the same networks without the pairs. However, it is surprising that a port in a network is removed the allowed address pairs due to a setting in an entry that yielded no port on that network. In other words, one would expect that the same subnet filtering that happens on each network entry in what regards yielding ports for the VM would also work for the noAllowedPairs parameter.

Version-Release number of selected component (if applicable):

4.10.30

How reproducible:

Always

Steps to Reproduce:

1. Create a machineset like in the description
2.
3.

Actual results:

All ports have no address pairs

Expected results:

Only the port on the secondary subnet has no address pairs.

Additional info:

A simple workaround would be to just fill the filter so that a single network is selected for each network entry.

References:
[1] - https://github.com/openshift/cluster-api-provider-openstack/blob/f6b51710d4f395ded401347589447f5f41dd5c4c/pkg/cloud/openstack/clients/machineservice.go#L576
[2] - https://github.com/openshift/cluster-api-provider-openstack/blob/f6b51710d4f395ded401347589447f5f41dd5c4c/pkg/cloud/openstack/clients/machineservice.go#L580
[3] - https://github.com/openshift/cluster-api-provider-openstack/blob/f6b51710d4f395ded401347589447f5f41dd5c4c/pkg/cloud/openstack/clients/machineservice.go#L581-L583
[4] - https://github.com/openshift/cluster-api-provider-openstack/blob/f6b51710d4f395ded401347589447f5f41dd5c4c/pkg/cloud/openstack/clients/machineservice.go#L658-L660
[5] - https://github.com/openshift/cluster-api-provider-openstack/blob/f6b51710d4f395ded401347589447f5f41dd5c4c/pkg/cloud/openstack/clients/machineservice.go#L610-L625

Description of problem:
Kebab menu for helm repository is showing inconsistent behavior

Version-Release number of selected component (if applicable): 4.12

How reproducible: Always

Steps to Reproduce:
1. Create some helm chart repository
2. Go to the Helm page and switch to the repositories tab
3. Open kebab menu for different repos

Actual results:
Menus are overlapping

Expected results:
The menu should work properly; one menu should close before opening a new one

Additional info:
Video has been added for the reference

Description of problem: As discovered in https://issues.redhat.com/browse/OCPBUGS-2795, gophercloud fails to list swift containers when the endpoint speaks HTTP2. This means that CIRO will provision a 100GB cinder volume even though swift is available to the tenant.

We're for example seeing this behavior in our CI on vexxhost.

The gophercloud commit that fixed this issue is https://github.com/gophercloud/gophercloud/commit/b7d5b2cdd7ffc13e79d924f61571b0e5f74ec91c, specifically the `|| ct == ""` part on line 75 of openstack/objectstorage/v1/containers/results.go. This commit made it in gophercloud v0.18.0.

CIRO still depends on gophercloud v0.17.0. We should bump gophercloud to fix the bug.

Version-Release number of selected component (if applicable):

All versions. Fix should go to 4.8 - 4.12.

How reproducible:

Always, when swift speaks HTTP2.

Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


This is a clone of issue OCPBUGS-3304. The following is the description of the original issue:

Assisted-service can use only one mirror of the release image. In the install-config, the user may specify multiple matching mirrors. Currently the last matching mirror is the one used by assisted-service. This is confusing; we should use the first matching one instead.

This is a clone of issue OCPBUGS-2384. The following is the description of the original issue:

Version:
$ openshift-install version
openshift-install 4.10.0-0.nightly-2021-12-23-153012
built from commit 94a3ed9cbe4db66dc50dab8b85d2abf40fb56426
release image registry.ci.openshift.org/ocp/release@sha256:39cacdae6214efce10005054fb492f02d26b59fe9d23686dc17ec8a42f428534
release architecture amd64

Platform: alibabacloud

Please specify:

  • IPI (automated install with `openshift-install`. If you don't know, then it's IPI)

What happened?
Unexpected error of 'Internal publish strategy is not supported on "alibabacloud" platform', because Internal publish strategy should be supported for "alibabacloud", please clarify otherwise, thanks!

$ openshift-install create install-config --dir work
? SSH Public Key /home/jiwei/.ssh/openshift-qe.pub
? Platform alibabacloud
? Region us-east-1
? Base Domain alicloud-qe.devcluster.openshift.com
? Cluster Name jiwei-uu
? Pull Secret [? for help] *********
INFO Install-Config created in: work
$
$ vim work/install-config.yaml
$ yq e '.publish' work/install-config.yaml
Internal
$ openshift-install create cluster --dir work --log-level info
FATAL failed to fetch Metadata: failed to load asset "Install Config": invalid "install-config.yaml" file: publish: Invalid value: "Internal": Internal publish strategy is not supported on "alibabacloud" platform
$

What did you expect to happen?
"publish: Internal" should be supported for platform "alibabacloud".

How to reproduce it (as minimally and precisely as possible)?
Always

This is a clone of issue OCPBUGS-1453. The following is the description of the original issue:

Description of problem:

TargetDown alert fired while it shouldn't.
Prometheus endpoints are not always properly unregistered and the alert will therefore think that some Kube service endpoints are down

Version-Release number of selected component (if applicable):

The problem as always been there.

How reproducible:

Not reproducible.
Most of the time Prometheus endpoints are properly unregistered.
Aim here is to get the TargetDown Prometheus expression be more resilient; this can be tested on past metrics data in which the unregistration issue was encountered.

Steps to Reproduce:

N/A

Actual results:

TargetDown alert triggered while Kube service endpoints are all up & running.

Expected results:

TargetDown alert should not have been trigerred.

Description of problem:

Provisioning interface on master node not getting ipv4 dhcp ip address from bootstrap dhcp server on OCP 4.10.16 IPI BareMetal install.

Customer is performing an OCP 4.10.16 IPI BareMetal install and bootstrap node provisions just fine, but when master nodes are booted for provisioning, they are not getting an ipv4 address via dhcp. As such, the install is not moving forward at this point.

Version-Release number of selected component (if applicable):

OCP 4.10.16

How reproducible:

Perform OCP 4.10.16 IPI BareMetal install.

Actual results:

provisioning interface comes up (as evidenced by ipv6 address) but is not getting an ipv4 address via dhcp. OCP install / provisioning fails at this point.

Expected results:

provisioning interface successfully received an ipv4 ip address and successfully provisioned master nodes (and subsequently worker nodes as well.)

Additional info:

As a troubleshooting measure, manually adding an ipv4 ip address did allow the coreos image on the bootstrap node to be reached via curl.

Further, the kernel boot line for the first master node was updated for a static ip addresss assignment for further confirmation that the master node would successfully image this way which further confirming that the issue is the provisioning interface not receiving an ipv4 ip address from the dhcp server.

Description of problem:

etcd and kube-apiserver pods get restarted due to failed liveness probes while deleting/re-creating pods on SNO

Version-Release number of selected component (if applicable):

4.10.32

How reproducible:

Not always, after ~10 attempts

Steps to Reproduce:

1. Deploy SNO with Telco DU profile applied
2. Create multiple pods with local storage volumes attached(attaching yaml manifest)
3. Force delete and re-create pods 10 times

Actual results:

etcd and kube-apiserver pods get restarted, making to cluster unavailable for a period of time

Expected results:

etcd and kube-apiserver do not get restarted

Additional info:

Attaching must-gather.

Please let me know if any additional info is required. Thank you!

Description of problem:

When user selects a installed operator (for example, openshift elastic search) in operator hub and navigating to installed operator page from operator information page

with the help of "view it here" option, "404 Not found" information has wrongly shown/appeared although it navigates to the installed operator at the end.

 

Version-Release number of selected components (if applicable):
4.12.0-0.nightly-2022-08-15-150248
How reproducible:

 Always

 

Steps to Reproduce:

  1. Login to OCP web console.
  2. Install Operator, For example,OpenShift Elasticsearch Operator- production operators if missing.
  3. Go to the Operator hub and  search for OpenShift Elasticsearch Operator. (make sure Project filter sets to 'All projects')
  4. Click on OpenShift Elasticsearch Operator- production operators.
  5. Click on the link "View it here" from the installed operator section.
  6. View the behavior.

Actual results:

Wrong message "404: Not found" while the user selects an installed operator and navigates from operator hub to installed operator page.

 

Browser console log indicate as below

main-chunk-525818b154a57a9b220a.min.js:1 unhandled error: Uncaught TypeError: Cannot read properties of undefined (reading 'firstElementChild') TypeError: Cannot read properties of undefined (reading 'firstElementChild')
    at c (https://console-openshift-console.apps.jmekkatt-dob.ibmcloud.qe.devcluster.openshift.com/static/vendors~main-chunk-40fab65853dff2fbc413.min.js:118:125992)
    at HTMLDivElement.l (https://console-openshift-console.apps.jmekkatt-dob.ibmcloud.qe.devcluster.openshift.com/static/vendors~main-chunk-40fab65853dff2fbc413.min.js:118:126387) TypeError: Cannot read properties of undefined (reading 'firstElementChild')
    at c (vendors~main-chunk-40fab65853dff2fbc413.min.js:72303:1)
    at HTMLDivElement.l (vendors~main-chunk-40fab65853dff2fbc413.min.js:72303:1)
window.onerror @ main-chunk-525818b154a57a9b220a.min.js:1
vendors~main-chunk-40fab65853dff2fbc413.min.js:72303 Uncaught TypeError: Cannot read properties of undefined (reading 'firstElementChild')
    at c (vendors~main-chunk-40fab65853dff2fbc413.min.js:72303:1)
    at HTMLDivElement.l (vendors~main-chunk-40fab65853dff2fbc413.min.js:72303:1)
c @ vendors~main-chunk-40fab65853dff2fbc413.min.js:72303
l @ vendors~main-chunk-40fab65853dff2fbc413.min.js:72303
scroll (async)
componentWillUnmount @ vendor-patternfly-core-chunk-006bb1499791fa7cfea7.min.js:38397
hs @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
bs @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
hs @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
bs @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
Oc @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
t.unstable_runWithPriority @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171690
Hi @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
Ac @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
pc @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
(anonymous) @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
t.unstable_runWithPriority @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171690
Hi @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
Vi @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
qi @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
De @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
Yt @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
main-chunk-525818b154a57a9b220a.min.js:1          GET https://console-openshift-console.apps.jmekkatt-dob.ibmcloud.qe.devcluster.openshift.com/api/kubernetes/apis/operators.coreos.com/v1alpha1/clusterserviceversions/elasticsearch-operator.5.5.0 404 (Not Found)
  

Expected results:

Installed operator details should show without any error when the user selects an installed operator and navigates from operator hub to installed operator page.

 

Additional info:

Reproduced in both chrome[103.0.5060.114 (Official Build) (64-bit)] and firefox[91.11.0esr (64-bit)] browsers

Attached screen share for the same issue InstalledOperatorNavigation404.mp4

In the Known Issues section of the OpenStack-specific Installer docs issues, there is a point about control plane anti-affinity.

The known issue has several problems:

  • it is in the UPI section, when it is not a UPI-specific issue
  • it mentions Control plane scale-out, when OCP only supports exactly 3 masters
  • it is now possible to set anti-affinity from the install-config.yaml, and that should be the recommended solution when VM distribution across hosts is required.

This is a clone of issue OCPBUGS-3883. The following is the description of the original issue:

While doing a PerfScale test of we noticed that the ovnkube pods are not being spread out evenly among the available workers. Instead they are all stacking on a few until they fill up the available allocatable ebs volumes (25 in the case of m5 instances that we see here).

An example from partway through our 80 hosted cluster test when there were ~30 hosted clusters created/in progress

There are 24 workers available:

```

$ for i in `oc get nodes l node-role.kubernetes.io/worker=,node-role.kubernetes.io/infra!=,node-role.kubernetes.io/workload!= | egrep -v "NAME" | awk '{ print $1 }'`;    do  echo $i `oc describe node $i | grep -v openshift | grep ovnkube -c`; done
ip-10-0-129-227.us-west-2.compute.internal 0
ip-10-0-136-22.us-west-2.compute.internal 25
ip-10-0-136-29.us-west-2.compute.internal 0
ip-10-0-147-248.us-west-2.compute.internal 0
ip-10-0-150-147.us-west-2.compute.internal 0
ip-10-0-154-207.us-west-2.compute.internal 0
ip-10-0-156-0.us-west-2.compute.internal 0
ip-10-0-157-1.us-west-2.compute.internal 4
ip-10-0-160-253.us-west-2.compute.internal 0
ip-10-0-161-30.us-west-2.compute.internal 0
ip-10-0-164-98.us-west-2.compute.internal 0
ip-10-0-168-245.us-west-2.compute.internal 0
ip-10-0-170-103.us-west-2.compute.internal 0
ip-10-0-188-169.us-west-2.compute.internal 25
ip-10-0-188-194.us-west-2.compute.internal 0
ip-10-0-191-51.us-west-2.compute.internal 5
ip-10-0-192-10.us-west-2.compute.internal 0
ip-10-0-193-200.us-west-2.compute.internal 0
ip-10-0-193-27.us-west-2.compute.internal 7
ip-10-0-199-1.us-west-2.compute.internal 0
ip-10-0-203-161.us-west-2.compute.internal 0
ip-10-0-204-40.us-west-2.compute.internal 23
ip-10-0-220-164.us-west-2.compute.internal 0
ip-10-0-222-59.us-west-2.compute.internal 0

```

This is running quay.io/openshift-release-dev/ocp-release:4.11.11-x86_64 for the hosted clusters and the hypershift operator is quay.io/hypershift/hypershift-operator:4.11 on a 4.11.9 management cluster

Our CMO e2e tests create several containers besides the standard CMO deployment. These pods do currently not set any security context capabilities. Currently this creates a warning like so:

W0705 08:35:38.590283 15206 warnings.go:70] would violate PodSecurity "restricted:v1.24": allowPrivilegeEscalation != false (container "alertmanager-webhook-e2e-testutil" must set securityContext.allowPrivilegeEscalation=false), unrestricted capabilities (container "alertmanager-webhook-e2e-testutil" must set securityContext.capabilities.drop=["ALL"]), runAsNonRoot != true (pod or container "alertmanager-webhook-e2e-testutil" must set securityContext.runAsNonRoot=true), seccompProfile (pod or container "alertmanager-webhook-e2e-testutil" must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")

We should be proactive and set security capability contraints. From this run this seems to impact the following pods/containers:

  • alertmanager-webhook-e2e-testutil
  • prometheus-example-app

Both are used more then once.

Relevant docs: https://docs.openshift.com/container-platform/4.10/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth

Description of problem:

When providing install-config as

platform:
 baremetal:
  apiVIP: 192.168.122.10
  ingressVIP: 192.168.122.11

agent installer fails with 
bin/openshift-install agent create cluster-manifests
FATAL failed to fetch Agent Manifests: failed to load asset "Install Config": invalid install-config configuration: [Platform.Baremetal.ApiVips: Required value: apiVips must be set for baremetal platform, Platform.Baremetal.IngressVips: Required value: ingressVips must be set for baremetal platform]
 

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Git clone latest installer https://github.com/openshift/installer and build it
2. Provide install-config.yaml for baremetal platform with deprecated apiVip and ingressVip set
3. Create agent image with "bin/openshift-install agent create cluster-manifests"

Actual results:

bin/openshift-install agent create cluster-manifests
FATAL failed to fetch Agent Manifests: failed to load asset "Install Config": invalid install-config configuration: [Platform.Baremetal.ApiVips: Required value: apiVips must be set for baremetal platform, Platform.Baremetal.IngressVips: Required value: ingressVips must be set for baremetal platform]

Expected results:

agent installer should upconvert the depreacted fields and should not error. apiVip, ingressVip should be upconverted into apiVips and ingressVips respectively

Additional info:

 

During a normal installation, there are hundreds of debug logs reading:

bootstrap configmap not found: configmaps "bootstrap" not found

and dozens of the form:

Still waiting for cluster to initialize: ...

with duplicate data.

We should only log when we have some new information to report, not every time we poll.

Description of problem:

With every pod update we are executing a mutate operation to add the pod port to the port group or add the pod IP to an address set. This functionally doesn't hurt, since mutate will not add duplicate values to the same set. However, this is bad for performance. For example, with a 730 network policies affecting a pod, and issuing 7 pod updates would result in over 5k transactions.

This is a clone of issue OCPBUGS-4701. The following is the description of the original issue:

Description of problem:

In at least 4.12.0-rc.0, a user with read-only access to ClusterVersion can see a "Control plane is hosted" banner (despite the control plane not being hosted), because hasPermissionsToUpdate is false, so canPerformUpgrade is false.

Version-Release number of selected component (if applicable):

4.12.0-rc.0. Likely more. I haven't traced it out.

How reproducible:

Always.

Steps to Reproduce:

1. Install 4.12.0-rc.0
2. Create a user with cluster-wide read-only permissions. For me, it's via binding to a sudoer ClusterRole. I'm not sure where that ClusterRole comes from, but it's:

$ oc get -o yaml clusterrole sudoer
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  annotations:
    rbac.authorization.kubernetes.io/autoupdate: "true"
  creationTimestamp: "2020-05-21T19:39:09Z"
  name: sudoer
  resourceVersion: "7715"
  uid: 28eb2ffa-dccd-47e8-a2d5-6a95e0e8b1e9
rules:
- apiGroups:
  - ""
  - user.openshift.io
  resourceNames:
  - system:admin
  resources:
  - systemusers
  - users
  verbs:
  - impersonate
- apiGroups:
  - ""
  - user.openshift.io
  resourceNames:
  - system:masters
  resources:
  - groups
  - systemgroups
  verbs:
  - impersonate

3. View /settings/cluster

Actual results:

See the "Control plane is hosted" banner.

Expected results:

Possible cases:

  • For me in my impersonate group, I can trigger updates via the command-line by using --as system:admin. I don't know if the console supports impersonation, or wants to mention the option if it does not.
  • For users with read-only access in stand-alone clusters, telling the user they are not authorized to update makes sense. Maybe mention that their cluster admins may be able to update, or just leave that unsaid.
  • For users with managed/dedicated branding, possibly point out that updates in that environment happen via OCM. And leave it up to OCM to decide if that user has access.
  • For users with externally-hosted control planes, possibly tell them this regardless of whether they have the ability to update via some external interface or not. For externally-hosted, Red-Hat-managed clusters, the interface will presumably be OCM. For externally-hosted, customer-managed clusters, there may be some ACM or other interface? I'm not sure. But the message of "this in-cluster web console is not where you configure this stuff, even if you are one of the people who can make these decisions for this cluster" will apply for all hosted situations.

We should deprecate and eventually remove react-helmet as a shared plugin dependency. This dependency is small, and plugins can bring their own version if needed.

This requires updated our webpack plugin to allow dependency fallbacks when a shared dependency is not present.

cc Vojtech Szocs 

 

AC:

  • Update docs in the GitHub pages to state that we are deprecating the react-helmet as a shared plugin dependency

Copied from an upstream issue: https://github.com/operator-framework/operator-lifecycle-manager/issues/2830

What did you do?

When attempting to reinstall an operator that uses conversion webhooks by

  • Deleting the operator subscription and any CSVs associated with it
  • Recreating the operator subscription

The resulting InstallPlan enters a failed state with message similar to

error validating existing CRs against new CRD's schema for "devworkspaces.workspace.devfile.io": error listing resources in GroupVersionResource schema.GroupVersionResource{Group:"workspace.devfile.io", Version:"v1alpha1", Resource:"devworkspaces"}: conversion webhook for workspace.devfile.io/v1alpha2, Kind=DevWorkspace failed: Post "https://devworkspace-controller-manager-service.test-namespace.svc:443/convert?timeout=30s": service "devworkspace-controller-manager-service" not found

When the original CSVs are deleted, the operator's main deployment and service are removed, but CRDs are left in-cluster. However, since the service/CA bundle/deployment that serve the conversion webhook are removed, conversion webhooks are broken at that point. Eventually this impacts garbage collection on the cluster as well.

This can be reproduced by installing the DevWorkspace Operator from the Red Hat catalog. (I can provide yamls/upstream images that reproduce as well, if that's helpful). It may be necessary to create a DevWorkspace in the cluster before deletion, e.g. by oc apply -f https://raw.githubusercontent.com/devfile/devworkspace-operator/main/samples/plain.yaml

What did you expect to see?
Operator is able to be reinstalled without removing CRDs and all instances.

What did you see instead? Under which circumstances?
It's necessary to completely remove the operator including CRDs. For our operator (DevWorkspace), this also makes uninstall especially complicated as finalizers are used (so CRDs cannot be deleted if the controller is removed, and the controller cannot be restored by reinstalling)

Environment

operator-lifecycle-manager version: 4.10.24

Kubernetes version information: Kubernetes Version: v1.23.5+012e945 (OpenShift 4.10.24)

Kubernetes cluster kind: OpenShift

Description of problem:
pkg/devfile/sample_test.go fails after devfile registry was updated (https://github.com/devfile/registry/pull/126)

OCPBUGS-1677 is about updating our assertion so that the CI job runs successfully again. We might want to backport this as well.

This is about updating the code that the test should use a mock response instead of the latest registry content OR check some specific attributes instead of comparing the full JSON response.

Version-Release number of selected component (if applicable):
4.12

How reproducible:
Always

Steps to Reproduce:
1. Clone openshift/console
2. Run ./test-backend.sh

Actual results:
Unit tests fail

Expected results:
Unit tests should pass again

Additional info:

This is a clone of issue OCPBUGS-6049. The following is the description of the original issue:

Description of problem:

We show the UpdateInProgress component (the progress bars) when the cluster update status is Failing, UpdatingAndFailing, or Updating.  The inclusion of the Failing case results in a bug where the progress bars can display when an update is not occurring (see attached screenshot).  

Steps to Reproduce:

1.  Add the following overrides to ClusterVersion config (/k8s/cluster/config.openshift.io~v1~ClusterVersion/version)

spec:
  overrides:
    - group: apps
      kind: Deployment
      name: console-operator
      namespace: openshift-console-operator
      unmanaged: true    
    - group: rbac.authorization.k8s.io
      kind: ClusterRole
      name: console-operator
      namespace: ''
      unmanaged: true
2.  Wait for ClusterVersion changes to roll out.
3.  Visit /settings/cluster and note the progress bars are present and displaying 100% but the cluster is not updating

Actual results:

Progress bars are displaying when not updating.

Expected results:

Progress bars should not display when updating.

This is a clone of issue OCPBUGS-5016. The following is the description of the original issue:

Description of problem:

When editing any pipeline in the openshift console, the correct content cannot be obtained (the obtained information is the initial information).

Version-Release number of selected component (if applicable):

 

How reproducible:

100%

Steps to Reproduce:

Developer -> Pipeline -> select pipeline -> Details -> Actions -> Edit Pipeline -> YAML view -> Cancel ->  Actions -> Edit Pipeline -> YAML view 

Actual results:

displayed content is incorrect.

Expected results:

Get the content of the current pipeline, not the "pipeline create" content.

Additional info:

If cancel or save in the "Pipeline Builder" interface after "Edit Pipeline", can get the expected content.
~
Developer -> Pipeline -> select pipeline -> Details -> Actions -> Edit Pipeline -> Pipeline builder -> Cancel ->  Actions -> Edit Pipeline -> YAML view :Display resource content normally
~

This is a clone of issue OCPBUGS-6213. The following is the description of the original issue:

Please review the following PR: https://github.com/openshift/machine-config-operator/pull/3450

The PR has been automatically opened by ART (#aos-art) team automation and indicates
that the image(s) being used downstream for production builds are not consistent
with the images referenced in this component's github repository.

Differences in upstream and downstream builds impact the fidelity of your CI signal.

If you disagree with the content of this PR, please contact @release-artists
in #aos-art to discuss the discrepancy.

Closing this issue without addressing the difference will cause the issue to
be reopened automatically.

Originally reported by lance5890 in issue https://github.com/openshift/cluster-etcd-operator/issues/1000

Under some circumstances the static pod machinery fails to populate the node status in time to generate the correct env variables for ETCD_URL_HOST, ETCD_NAME etc. The pods that come up will fail to accept those variables.

This is particularly pronounced in SNO topologies, leading to installation failures. 

The fix is to fail fast in the targetconfig/envvar controller to ensure the CEO goes degraded instead of silently failing on the rollout of an invalid static pod.

cloud-controller-manager does not react to changes to infrastructure secrets (in the OpenStack case: clouds.yaml).
As a consequence, if credentials are rotated (and the old ones are rendered useless), load balancer creation and deletion will not succeed any more. Restarting the controller fixes the issue on a live cluster.

Logs show that it couldn't find the application credentials:

Dec 19 12:58:58.909: INFO: At 2022-12-19 12:53:58 +0000 UTC - event for udp-lb-default-svc: {service-controller } EnsuringLoadBalancer: Ensuring load balancer
Dec 19 12:58:58.909: INFO: At 2022-12-19 12:53:58 +0000 UTC - event for udp-lb-default-svc: {service-controller } SyncLoadBalancerFailed: Error syncing load balancer: failed to ensure load balancer: failed to get subnet to create load balancer for service e2e-test-openstack-q9jnk/udp-lb-default-svc: Unable to re-authenticate: Expected HTTP response code [200 204 300] when accessing [GET https://compute.rdo.mtl2.vexxhost.net/v2.1/0693e2bb538c42b79a49fe6d2e61b0fc/servers/fbeb21b8-05f0-4734-914e-926b6a6225f1/os-interface], but got 401 instead
{"error": {"code": 401, "title": "Unauthorized", "message": "The request you have made requires authentication."}}: Resource not found: [POST https://identity.rdo.mtl2.vexxhost.net/v3/auth/tokens], error message: {"error":{"code":404,"message":"Could not find Application Credential: 1b78233956b34c6cbe5e1c95445972a4.","title":"Not Found"}}

OpenStack CI has been instrumented to restart CCM after credentials rotation, so that we silence this particular issue and avoid masking any other. That workaround must be reverted once this bug is fixed.

Description of problem:

The current version of openshift's corendns is based on Kubernetes 1.24 packages.  OpenShift 4.12 is based on Kubernetes 1.25.  

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. Check https://github.com/openshift/coredns/blob/release-4.12/go.mod 

Actual results:

Kubernetes packages (k8s.io/api, k8s.io/apimachinery, and k8s.io/client-go) are at version v0.24.0.

Expected results:

Kubernetes packages are at version v0.25.0 or later.

Additional info:

Using old Kubernetes API and client packages brings risk of API compatibility issues.

This is a clone of issue OCPBUGS-3633. The following is the description of the original issue:

I think something is wrong with the alerts refactor, or perhaps my sync to 4.12.

Failed: suite=[openshift-tests], [sig-instrumentation][Late] Alerts shouldn't report any unexpected alerts in firing or pending state [apigroup:config.openshift.io] [Suite:openshift/conformance/parallel]

Passed 1 times, failed 0 times, skipped 0 times: we require at least 6 attempts to have a chance at success

We're not getting the passes - from https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/aggregated-azure-ovn-upgrade-4.12-micro-release-openshift-release-analysis-aggregator/1592021681235300352, the successful runs don't show any record of the test at all. We need to record successes and failures for aggregation to work right.

This is a clone of issue OCPBUGS-3432. The following is the description of the original issue:

Description of problem:

E2E test cases for knative and pipeline packages have been disabled on CI due to respective operator installation issues. 
Tests have to be enabled after new operator version be available or the issue resolves

References:
https://coreos.slack.com/archives/C6A3NV5J9/p1664545970777239

Version-Release number of selected component (if applicable):


How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


Description of problem:

acquiring node lock for assigning ip address, node: %s, ip: %sci-ln-g470i52-1d09d-slz7m-worker-westus-6wt7k10.0.128.102

Description of problem:

$ oc adm must-gather -- gather_ingress_node_firewall
[must-gather      ] OUT Using must-gather plug-in image: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:3dec5a08681e11eedcd31f075941b74f777b9187f0e711a498a212f9d96adb2f
When opening a support case, bugzilla, or issue please include the following summary data along with any other requested information:
ClusterID: 0ef60b50-4378-431d-8ca2-faa5af098274
ClusterVersion: Stable at "4.12.0-0.nightly-2022-09-26-111919"
ClusterOperators:
    clusteroperator/insights is not available (Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed
) because Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed[must-gather      ] OUT namespace/openshift-must-gather-fr7kc created
[must-gather      ] OUT clusterrolebinding.rbac.authorization.k8s.io/must-gather-xx2fh created
[must-gather      ] OUT pod for plug-in image quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:3dec5a08681e11eedcd31f075941b74f777b9187f0e711a498a212f9d96adb2f created
[must-gather-xvfj4] POD 2022-09-28T16:57:00.887445531Z /bin/bash: /usr/bin/gather_ingress_node_firewall: Permission denied
[must-gather-xvfj4] OUT waiting for gather to complete
[must-gather-xvfj4] OUT downloading gather output
[must-gather-xvfj4] OUT receiving incremental file list
[must-gather-xvfj4] OUT ./
[must-gather-xvfj4] OUT 
[must-gather-xvfj4] OUT sent 27 bytes  received 40 bytes  26.80 bytes/sec
[must-gather-xvfj4] OUT total size is 0  speedup is 0.00
[must-gather      ] OUT namespace/openshift-must-gather-fr7kc deleted
[must-gather      ] OUT clusterrolebinding.rbac.authorization.k8s.io/must-gather-xx2fh deleted
Reprinting Cluster State:
When opening a support case, bugzilla, or issue please include the following summary data along with any other requested information:
ClusterID: 0ef60b50-4378-431d-8ca2-faa5af098274
ClusterVersion: Stable at "4.12.0-0.nightly-2022-09-26-111919"
ClusterOperators:
    clusteroperator/insights is not available (Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed
) because Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

Get the below error when upgrading to OCP 4.12 from 4.9->4.10->4.11.

MacBook-Pro:~ jianzhang$ oc get clusterversion
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.0-0.nightly-2022-08-24-091058   True        True          4h      Unable to apply 4.12.0-0.nightly-2022-08-24-053339: the workload openshift-operator-lifecycle-manager/package-server-manager cannot roll out
   - lastTransitionTime: "2022-08-25T04:47:36Z"
    lastUpdateTime: "2022-08-25T04:47:36Z"
    message: 'pods "package-server-manager-85b6dc4d89-sdzcc" is forbidden: violates
      PodSecurity "restricted:v1.24": seccompProfile (pod or container "package-server-manager"
      must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")'
    reason: FailedCreate
    status: "True"
    type: ReplicaFailure

 

Version-Release number of selected component (if applicable):

MacBook-Pro:~ jianzhang$ oc exec catalog-operator-c5c655d5c-b9lcn -- olm --version
OLM version: 0.19.0
git commit: 8a984d41acc67c0bc9bfe807fadeef23f83abd44 

How reproducible:

always

Steps to Reproduce:
1. Install OCP 4.11.0-0.nightly-2022-08-24-091058
2. Upgrade it to 4.12.0-0.nightly-2022-08-24-053339

Actual results:

The cluster upgrading is blocked. Get the above errors as described.

Expected results:

 Upgraded to 4.12 from old OCP versions 4.5, 4.9 successfully.

Additional info:

MacBook-Pro:~ jianzhang$ oc get deployment package-server-manager -o yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  annotations:
    deployment.kubernetes.io/revision: "5"
    include.release.openshift.io/ibm-cloud-managed: "true"
    include.release.openshift.io/self-managed-high-availability: "true"
    include.release.openshift.io/single-node-developer: "true"
  creationTimestamp: "2022-08-25T00:14:08Z"
  generation: 5
  labels:
    app: package-server-manager
  name: package-server-manager
  namespace: openshift-operator-lifecycle-manager
  ownerReferences:
  - apiVersion: config.openshift.io/v1
    kind: ClusterVersion
    name: version
    uid: 3fd29082-0e76-4b09-988e-78cb5fc7c8b5
  resourceVersion: "169028"
  uid: c8f7cbe2-4f82-40ce-9468-817ffefa903f
spec:
  progressDeadlineSeconds: 600
  replicas: 1
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      app: package-server-manager
  strategy:
    rollingUpdate:
      maxSurge: 25%
      maxUnavailable: 25%
    type: RollingUpdate
  template:
    metadata:
      annotations:
        target.workload.openshift.io/management: '{"effect": "PreferredDuringScheduling"}'
      creationTimestamp: null
      labels:
        app: package-server-manager
    spec:
      containers:
      - args:
        - --name
        - $(PACKAGESERVER_NAME)
        - --namespace
        - $(PACKAGESERVER_NAMESPACE)
        command:
        - /bin/psm
        - start
        env:
        - name: PACKAGESERVER_NAME
          value: packageserver
        - name: PACKAGESERVER_IMAGE
          value: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:d49e1e27114f4b719bc8f3c222b2c5934d3b8028c79ec8e2bd288f6e9b5b3d5c
        - name: PACKAGESERVER_NAMESPACE
          valueFrom:
            fieldRef:
              apiVersion: v1
              fieldPath: metadata.namespace
        - name: RELEASE_VERSION
          value: 4.12.0-0.nightly-2022-08-24-053339
        image: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:d49e1e27114f4b719bc8f3c222b2c5934d3b8028c79ec8e2bd288f6e9b5b3d5c
        imagePullPolicy: IfNotPresent
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /healthz
            port: 8080
            scheme: HTTP
          initialDelaySeconds: 30
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 1
        name: package-server-manager
        readinessProbe:
          failureThreshold: 3
          httpGet:
            path: /healthz
            port: 8080
            scheme: HTTP
          initialDelaySeconds: 30
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 1
        resources:
          requests:
            cpu: 10m
            memory: 50Mi
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop:
            - ALL
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: FallbackToLogsOnError
      dnsPolicy: ClusterFirst
      nodeSelector:
        kubernetes.io/os: linux
        node-role.kubernetes.io/master: ""
      priorityClassName: system-cluster-critical
      restartPolicy: Always
      schedulerName: default-scheduler
      securityContext:
        runAsNonRoot: true
      serviceAccount: olm-operator-serviceaccount
      serviceAccountName: olm-operator-serviceaccount
      terminationGracePeriodSeconds: 30
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/master
        operator: Exists
      - effect: NoExecute
        key: node.kubernetes.io/unreachable
        operator: Exists
        tolerationSeconds: 120
      - effect: NoExecute
        key: node.kubernetes.io/not-ready
        operator: Exists
        tolerationSeconds: 120
status:
  availableReplicas: 1
  conditions:
  - lastTransitionTime: "2022-08-25T03:14:20Z"
    lastUpdateTime: "2022-08-25T03:14:20Z"
    message: Deployment has minimum availability.
    reason: MinimumReplicasAvailable
    status: "True"
    type: Available
  - lastTransitionTime: "2022-08-25T04:47:36Z"
    lastUpdateTime: "2022-08-25T04:47:36Z"
    message: 'pods "package-server-manager-85b6dc4d89-sdzcc" is forbidden: violates
      PodSecurity "restricted:v1.24": seccompProfile (pod or container "package-server-manager"
      must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")'
    reason: FailedCreate
    status: "True"
    type: ReplicaFailure
  - lastTransitionTime: "2022-08-25T04:57:37Z"
    lastUpdateTime: "2022-08-25T04:57:37Z"
    message: ReplicaSet "package-server-manager-85b6dc4d89" has timed out progressing.
    reason: ProgressDeadlineExceeded
    status: "False"
    type: Progressing
  observedGeneration: 5
  readyReplicas: 1
  replicas: 1
  unavailableReplicas: 1 

This is a clone of issue OCPBUGS-4022. The following is the description of the original issue:

Description of problem:
Unnecessary react warning:

Warning: Each child in a list should have a unique "key" prop.

Check the render method of `NavSection`. See https://reactjs.org/link/warning-keys for more information.
NavItemHref@http://localhost:9012/static/main-785e94355aeacc12c321.js:5141:88
NavSection@http://localhost:9012/static/main-785e94355aeacc12c321.js:5294:20
PluginNavItem@http://localhost:9012/static/main-785e94355aeacc12c321.js:5582:23
div
PerspectiveNav@http://localhost:9012/static/main-785e94355aeacc12c321.js:5398:134

Version-Release number of selected component (if applicable):
4.11 was fine
4.12 and 4.13 (master) shows this warning

How reproducible:
Always

Steps to Reproduce:
1. Open browser log
2. Open web console

Actual results:
React warning

Expected results:
Obviously no react warning

When installing OCP cluster with worker nodes VM type specified as high performance, some of the configuration settings of said VMs do not match the configuration settings a high performance VM should have.

Specific configurations that do not match are described in subtasks.

 

Default configuration settings of high performance VMs:
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/virtual_machine_management_guide/index?extIdCarryOver=true&sc_cid=701f2000001Css5AAC#Configuring_High_Performance_Virtual_Machines_Templates_and_Pools

When installing OCP cluster with worker nodes VM type specified as high performance, manual and automatic migration is enabled in the said VMs.
However, high performance worker VMs are created with default values of the engine, so only manual migration should be enabled.

Default configuration settings of high performance VMs:
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/virtual_machine_management_guide/index?extIdCarryOver=true&sc_cid=701f2000001Css5AAC#Configuring_High_Performance_Virtual_Machines_Templates_and_Pools

How reproducible: 100%

How to reproduce:

1. Create install-config.yaml with a vmType field and set it to high performance, i.e.:

apiVersion: v1
baseDomain: basedomain.com
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    ovirt:
      affinityGroupsNames: []
      vmType: high_performance
  replicas: 2
...

2. Run installation

./openshift-install create cluster --dir=resources --log-level=debug

3. Check worker VM's configuration in the RHV webconsole.

Expected:
Only manual migration (under Host) should be enabled.

Actual:
Manual and automatic migration is enabled.

Description of problem:

metal3 pod does not come up on SNO when creating Provisioning with provisioningNetwork set to Disabled

The issue is that on SNO, there is no Machine, and no BareMetalHost, it is looking of Machine objects to populate the provisioningMacAddresses field. However, when provisioningNetwork is Disabled, provisioningMacAddresses is not used anyway.

You can work around this issue by populating provisioningMacAddresses with a dummy address, like this:

kind: Provisioning
metadata:
  name: provisioning-configuration
spec:
  provisioningMacAddresses:
  - aa:aa:aa:aa:aa:aa
  provisioningNetwork: Disabled
  watchAllNamespaces: true

Version-Release number of selected component (if applicable):

4.11.17

How reproducible:

Try to bring up Provisioning on SNO in 4.11.17 with provisioningNetwork set to Disabled

apiVersion: metal3.io/v1alpha1
kind: Provisioning
metadata:
  name: provisioning-configuration
spec:
  provisioningNetwork: Disabled
  watchAllNamespaces: true

Steps to Reproduce:

1.
2.
3.

Actual results:

controller/provisioning "msg"="Reconciler error" "error"="machines with cluster-api-machine-role=master not found" "name"="provisioning-configuration" "namespace"="" "reconciler group"="metal3.io" "reconciler kind"="Provisioning"

Expected results:

metal3 pod should be deployed

Additional info:

This issue is a result of this change: https://github.com/openshift/cluster-baremetal-operator/pull/307
See this Slack thread: https://coreos.slack.com/archives/CFP6ST0A3/p1670530729168599

Description of problem:

release-4.12 of openshift/cloud-provider-openstack is missing some commits that were backported in upstream project into the release-1.25 branch.
We should import them in our downstream fork.

How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


This is a clone of issue OCPBUGS-3524. The following is the description of the original issue:

Description of problem:

Install fully private cluster on Azure against 4.12.0-0.nightly-2022-11-10-033725, sa for coreOS image have public access.

$ az storage account list -g jima-azure-11a-f58lp-rg --query "[].[name,allowBlobPublicAccess]" -o tsv
clusterptkpx    True
imageregistryjimaazrsgcc    False

same profile on 4.11.0-0.nightly-2022-11-10-202051, sa for coreos image are not publicly accessible.

$ az storage account list -g jima-azure-11c-kf9hw-rg --query "[].[name,allowBlobPublicAccess]" -o tsv
clusterr8wv9    False
imageregistryjimaaz9btdx    False 

Checked that terraform-provider-azurerm version is different between 4.11 and 4.12.

4.11: v2.98.0

4.12: v3.19.1

In terraform-provider-azurerm v2.98.0, it use property allow_blob_public_access to manage sa public access, the default value is false.

In  terraform-provider-azurerm v3.19.1, property allow_blob_public_access is renamed to allow_nested_items_to_be_public , the default value is true. 

https://github.com/hashicorp/terraform-provider-azurerm/blob/main/CHANGELOG.md#300-march-24-2022

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-11-10-033725

How reproducible:

always on 4.12

Steps to Reproduce:

1. Install fully private cluster on azure against 4.12 payload
2. 
3.

Actual results:

sa for coreos image is publicly accessible

Expected results:

sa for coreos image should not be publicly accessible

Additional info:

only happened on 4.12

 

 

This is a clone of issue OCPBUGS-5505. The following is the description of the original issue:

Description of problem:

The upgradeability check in CVO is throttled (essentially cached) for a nondeterministic period of time, same as the minimal sync period computed at runtime. The period can be up to 4 minutes, determined at CVO start time as 2minutes * (0..1 + 1). We agreed with Trevor that such throttling is unnecessarily aggressive (the check is not that expensive). It also causes CI flakes, because the matching test only has 3 minutes timeout. Additionally, the non-determinism and longer throttling results makes UX worse by actions done in the cluster may have their observable effect delayed.

Version-Release number of selected component (if applicable):

discovered in 4.10 -> 4.11 upgrade jobs

How reproducible:

The test seems to flake ~10% of 4.10->4.11 Azure jobs (sippy). There does not seem to be that much impact on non-Azure jobs though which is a bit weird.

Steps to Reproduce:

Inspect the CVO log and E2E logs from failing jobs with the provided [^check-cvo.py] helper:

$ ./check-cvo.py cvo.log && echo PASS || echo FAIL

Preferably, inspect CVO logs of clusters that just underwent an upgrade (upgrades makes the original problematic behavior more likely to surface)

Actual results:

$ ./check-cvo.py openshift-cluster-version_cluster-version-operator-5b6966c474-g4kwk_cluster-version-operator.log && echo PASS || echo FAIL
FAIL: Cache hit at 11:59:55.332339 0:03:13.665006 after check at 11:56:41.667333
FAIL: Cache hit at 12:06:22.663215 0:03:13.664964 after check at 12:03:08.998251
FAIL: Cache hit at 12:12:49.997119 0:03:13.665598 after check at 12:09:36.331521
FAIL: Cache hit at 12:19:17.328510 0:03:13.664906 after check at 12:16:03.663604
FAIL: Cache hit at 12:25:44.662290 0:03:13.666759 after check at 12:22:30.995531
Upgradeability checks:           5
Upgradeability check cache hits: 12
FAIL

Note that the bug is probabilistic, so not all unfixed clusters will exhibit the behavior. My guess of the incidence rate is about 30-40%.

Expected result

$ ./check-cvo.py openshift-cluster-version_cluster-version-operator-7b8f85d455-mk9fs_cluster-version-operator.log && echo PASS || echo FAIL
Upgradeability checks:           12
Upgradeability check cache hits: 11
PASS

The actual numbers are not relevant (unless the upgradeabilily check count is zero, which means the test is not conclusive, the script warns about that), lack of failure is.

Additional info:

$ curl --silent https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.11-upgrade-from-stable-4.10-e2e-azure-upgrade/1607602927633960960/artifacts/e2e-azure-upgrade/gather-extra/artifacts/pods/openshift-cluster-version_cluster-version-operator-7b7d4b5bbd-zjqdt_cluster-version-operator.log | grep upgradeable.go
...
I1227 06:50:59.023190       1 upgradeable.go:122] Cluster current version=4.10.46
I1227 06:50:59.042735       1 upgradeable.go:42] Upgradeable conditions were recently checked, will try later.
I1227 06:51:14.024345       1 upgradeable.go:42] Upgradeable conditions were recently checked, will try later.
I1227 06:53:23.080768       1 upgradeable.go:42] Upgradeable conditions were recently checked, will try later.
I1227 06:56:59.366010       1 upgradeable.go:122] Cluster current version=4.11.0-0.ci-2022-12-26-193640

$ curl --silent https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.11-upgrade-from-stable-4.10-e2e-azure-upgrade/1607602927633960960/artifacts/e2e-azure-upgrade/openshift-e2e-test/artifacts/e2e.log | grep 'Kubernetes 1.25 and therefore OpenShift 4.12'
Dec 27 06:51:15.319: INFO: Waiting for Upgradeable to be AdminAckRequired for "Kubernetes 1.25 and therefore OpenShift 4.12 remove several APIs which require admin consideration. Please see the knowledge article https://access.redhat.com/articles/6955381 for details and instructions." ...
Dec 27 06:54:15.413: FAIL: Error while waiting for Upgradeable to complain about AdminAckRequired with message "Kubernetes 1.25 and therefore OpenShift 4.12 remove several APIs which require admin consideration. Please see the knowledge article https://access.redhat.com/articles/6955381 for details and instructions.": timed out waiting for the condition
The test passes. Also, the "Upgradeable conditions were recently checked, will try later." messages in CVO logs should never occur after a deterministic, short amount of time (I propose 1 minute) after upgradeability was checked.

I tested the throttling period in https://github.com/openshift/cluster-version-operator/pull/880. With the period of 15m, the test passrate was 4 of 9. Wiht the period of 1m, the test did not fail at all.

Some context in Slack thread

Name: Routing
Description: Please change the "Routing" component to be a subcomponent "router" of the "Networking" component.

Component: change to "Networking".
Subcomponent: change to "router".

Existing fields (default assignee, default QA contact, default CC email list, etc.) should remain the same as they currently are.
Default Assignee: aos-network-edge-staff@bot.bugzilla.redhat.com
Default QA Contact: hongli@redhat.com
Default CC List: aos-network-edge-staff@bot.bugzilla.redhat.com
Additional Notes:
I filled in "Default CC email list" because the form validation would not permit me to omit it. However, it can be left empty in Bugzilla (it is currently empty).

If possible, we would like this change to be done prior to the Bugzilla-to-Jira migration to avoid the need to make the change after the migration.

Description of problem:

With "createFirewallRules: Enabled", after successful "create cluster" and then "destroy cluster", the created firewall-rules in the shared VPC are not deleted.

Version-Release number of selected component (if applicable):

$ ./openshift-install version
./openshift-install 4.12.0-0.nightly-2022-09-28-204419
built from commit 9eb0224926982cdd6cae53b872326292133e532d
release image registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc
release architecture amd64

How reproducible:

Always

Steps to Reproduce:

1. try IPI installation with "createFirewallRules: Enabled", which succeeded
2. try destroying the cluster, which succeeded
3. check firewall-rules in the shared VPC 

Actual results:

After destroying the cluster, its firewall-rules created by installer in the shared VPC are not deleted.

Expected results:

Those firewall-rules should be deleted during destroying the cluster.

Additional info:

$ gcloud --project openshift-qe-shared-vpc compute firewall-rules list --filter='network=installer-shared-vpc'
NAME                                NETWORK               DIRECTION  PRIORITY  ALLOW                                                    
                                                                                                 DENY  DISABLED
ci-op-xpn-ingress-common            installer-shared-vpc  INGRESS    60000     tcp:6443,tcp:22,tcp:80,tcp:443,icmp                      
                                                                                                       False
ci-op-xpn-ingress-health-checks     installer-shared-vpc  INGRESS    60000     tcp:30000-32767,udp:30000-32767,tcp:6080,tcp:6443,tcp:226
24,tcp:32335                                                                                           False
ci-op-xpn-ingress-internal-network  installer-shared-vpc  INGRESS    60000     udp:4789,udp:6081,udp:500,udp:4500,esp,tcp:9000-9999,udp:
9000-9999,tcp:10250,tcp:30000-32767,udp:30000-32767,tcp:10257,tcp:10259,tcp:22623,tcp:2379-2380        FalseTo show all fields of the firewall, please show in JSON format: --format=json
To show all fields in table format, please see the examples in --help.
$ 
$ yq-3.3.0 r test2/install-config.yaml platform
gcp:
  projectID: openshift-qe  
  region: us-central1
  computeSubnet: installer-shared-vpc-subnet-2
  controlPlaneSubnet: installer-shared-vpc-subnet-1
  createFirewallRules: Enabled
  network: installer-shared-vpc
  networkProjectID: openshift-qe-shared-vpc
$ 
$ yq-3.3.0 r test2/install-config.yaml metadata
creationTimestamp: null
name: jiwei-1013-01
$ 
$ openshift-install create cluster --dir test2
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json"
INFO Consuming Install Config from target directory
INFO Creating infrastructure resources...
INFO Waiting up to 20m0s (until 4:06AM) for the Kubernetes API at https://api.jiwei-1013-01.qe.gcp.devcluster.openshift.com:6443...
INFO API v1.24.0+8c7c967 up
INFO Waiting up to 30m0s (until 4:20AM) for bootstrapping to complete...
INFO Destroying the bootstrap resources...
INFO Waiting up to 40m0s (until 4:42AM) for the cluster at https://api.jiwei-1013-01.qe.gcp.devcluster.openshift.com:6443 to initialize...
INFO Checking to see if there is a route at openshift-console/console...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/fedora/test2/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.jiwei-1013-01.qe.gcp.devcluster.openshift.com
INFO Login to the console with user: "kubeadmin", and password: "wWPkc-8G2Lw-xe2Vw-DgWha"
INFO Time elapsed: 39m14s  
$ 
$ openshift-install destroy cluster --dir test2
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json"
INFO Stopped instance jiwei-1013-01-464st-worker-b-pmg5z
INFO Stopped instance jiwei-1013-01-464st-worker-a-csg2j
INFO Stopped instance jiwei-1013-01-464st-master-1
INFO Stopped instance jiwei-1013-01-464st-master-2
INFO Stopped instance jiwei-1013-01-464st-master-0
INFO Deleted 2 recordset(s) in zone qe
INFO Deleted 3 recordset(s) in zone jiwei-1013-01-464st-private-zone
INFO Deleted DNS zone jiwei-1013-01-464st-private-zone
INFO Deleted bucket jiwei-1013-01-464st-image-registry-us-central1-ulgxgjfqxbdnrhd
INFO Deleted instance jiwei-1013-01-464st-master-0
INFO Deleted instance jiwei-1013-01-464st-worker-a-csg2j
INFO Deleted instance jiwei-1013-01-464st-master-1
INFO Deleted instance jiwei-1013-01-464st-worker-b-pmg5z
INFO Deleted instance jiwei-1013-01-464st-master-2
INFO Deleted disk jiwei-1013-01-464st-master-2
INFO Deleted disk jiwei-1013-01-464st-master-1
INFO Deleted disk jiwei-1013-01-464st-worker-b-pmg5z
INFO Deleted disk jiwei-1013-01-464st-master-0
INFO Deleted disk jiwei-1013-01-464st-worker-a-csg2j
INFO Deleted address jiwei-1013-01-464st-cluster-public-ip
INFO Deleted address jiwei-1013-01-464st-cluster-ip
INFO Deleted forwarding rule a516d89f9a4f14bdfb55a525b1a12a91
INFO Deleted forwarding rule jiwei-1013-01-464st-api
INFO Deleted forwarding rule jiwei-1013-01-464st-api-internal
INFO Deleted target pool a516d89f9a4f14bdfb55a525b1a12a91
INFO Deleted target pool jiwei-1013-01-464st-api
INFO Deleted backend service jiwei-1013-01-464st-api-internal
INFO Deleted instance group jiwei-1013-01-464st-master-us-central1-a
INFO Deleted instance group jiwei-1013-01-464st-master-us-central1-c
INFO Deleted instance group jiwei-1013-01-464st-master-us-central1-b
INFO Deleted health check jiwei-1013-01-464st-api-internal
INFO Deleted HTTP health check a516d89f9a4f14bdfb55a525b1a12a91
INFO Deleted HTTP health check jiwei-1013-01-464st-api
INFO Time elapsed: 4m18s   
$ 
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules list --filter='network=installer-shared-vpc'
NAME                                          NETWORK               DIRECTION  PRIORITY  ALLOW                                                                                                                                                     DENY  DISABLED
ci-op-xpn-ingress-common                      installer-shared-vpc  INGRESS    60000     tcp:6443,tcp:22,tcp:80,tcp:443,icmp                                                                                                                             False
ci-op-xpn-ingress-health-checks               installer-shared-vpc  INGRESS    60000     tcp:30000-32767,udp:30000-32767,tcp:6080,tcp:6443,tcp:22624,tcp:32335                                                                                           False
ci-op-xpn-ingress-internal-network            installer-shared-vpc  INGRESS    60000     udp:4789,udp:6081,udp:500,udp:4500,esp,tcp:9000-9999,udp:9000-9999,tcp:10250,tcp:30000-32767,udp:30000-32767,tcp:10257,tcp:10259,tcp:22623,tcp:2379-2380        False
jiwei-1013-01-464st-api                       installer-shared-vpc  INGRESS    1000      tcp:6443                                                                                                                                                        False
jiwei-1013-01-464st-control-plane             installer-shared-vpc  INGRESS    1000      tcp:22623,tcp:10257,tcp:10259                                                                                                                                   False
jiwei-1013-01-464st-etcd                      installer-shared-vpc  INGRESS    1000      tcp:2379-2380                                                                                                                                                   False
jiwei-1013-01-464st-health-checks             installer-shared-vpc  INGRESS    1000      tcp:6080,tcp:6443,tcp:22624                                                                                                                                     False
jiwei-1013-01-464st-internal-cluster          installer-shared-vpc  INGRESS    1000      tcp:30000-32767,udp:9000-9999,udp:30000-32767,udp:4789,udp:6081,tcp:9000-9999,udp:500,udp:4500,esp,tcp:10250                                                    False
jiwei-1013-01-464st-internal-network          installer-shared-vpc  INGRESS    1000      icmp,tcp:22                                                                                                                                                     False
k8s-a516d89f9a4f14bdfb55a525b1a12a91-http-hc  installer-shared-vpc  INGRESS    1000      tcp:30268                                                                                                                                                       False
k8s-fw-a516d89f9a4f14bdfb55a525b1a12a91       installer-shared-vpc  INGRESS    1000      tcp:80,tcp:443                                                                                                                                                  FalseTo show all fields of the firewall, please show in JSON format: --format=json
To show all fields in table format, please see the examples in --help.
$ 

FYI manually deleting those firewall-rules in the shared VPC does work.
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-api
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-api].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-control-plane
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-control-plane].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-etcd
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-etcd].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-health-checks
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-health-checks].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-internal-cluster
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-internal-cluster].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-internal-network
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-internal-network].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q k8s-a516d89f9a4f14bdfb55a525b1a12a91-http-hc
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/k8s-a516d89f9a4f14bdfb55a525b1a12a91-http-hc].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q k8s-fw-a516d89f9a4f14bdfb55a525b1a12a91
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/k8s-fw-a516d89f9a4f14bdfb55a525b1a12a91].
$ 
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules list --filter='network=installer-shared-vpc'
NAME                                NETWORK               DIRECTION  PRIORITY  ALLOW                                                                                                                                                     DENY  DISABLED
ci-op-xpn-ingress-common            installer-shared-vpc  INGRESS    60000     tcp:6443,tcp:22,tcp:80,tcp:443,icmp                                                                                                                             False
ci-op-xpn-ingress-health-checks     installer-shared-vpc  INGRESS    60000     tcp:30000-32767,udp:30000-32767,tcp:6080,tcp:6443,tcp:22624,tcp:32335                                                                                           False
ci-op-xpn-ingress-internal-network  installer-shared-vpc  INGRESS    60000     udp:4789,udp:6081,udp:500,udp:4500,esp,tcp:9000-9999,udp:9000-9999,tcp:10250,tcp:30000-32767,udp:30000-32767,tcp:10257,tcp:10259,tcp:22623,tcp:2379-2380        FalseTo show all fields of the firewall, please show in JSON format: --format=json
To show all fields in table format, please see the examples in --help.
$ 

 

 

 

 

This is a clone of issue OCPBUGS-2513. The following is the description of the original issue:

Description of problem:

Agent based installation is failing for Disconnected env due to pull secret is required for registry.ci.openshift.org. As we are installing cluster in disconnected env, only mirror registry secrets should be enough for pulling the image.

Version-Release number of selected component (if applicable):

registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-18-041406

How reproducible:

Always

Steps to Reproduce:

1. Setup mirror registry with this registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-18-041406 release. 
2. Add the ICSP information in the install-config file
4. Create agent.iso using install-config.yaml and agent-config.yaml
5. ssh to the node zero to see the error in create-cluster-and-infraenv.service. 

Actual results:

create-cluster-and-infraenv.service is failing with below error:
 
time="2022-10-18T09:36:13Z" level=fatal msg="Failed to register cluster with assisted-service: AssistedServiceError Code: 400 Href:  ID: 400 Kind: Error Reason: pull secret for new cluster is invalid: pull secret must contain auth for \"registry.ci.openshift.org\""

Expected results:

create-cluster-and-infraenv.service should be successfully started.

Additional info:

Refer this similar bug https://bugzilla.redhat.com/show_bug.cgi?id=1990659

This is a clone of issue OCPBUGS-4089. The following is the description of the original issue:

The kube-state-metric pod inside the openshift-monitoring namespace is not running as expected.

On checking the logs I am able to see that there is a memory panic

~~~
2022-11-22T09:57:17.901790234Z I1122 09:57:17.901768 1 main.go:199] Starting kube-state-metrics self metrics server: 127.0.0.1:8082
2022-11-22T09:57:17.901975837Z I1122 09:57:17.901951 1 main.go:66] levelinfomsgTLS is disabled.http2false
2022-11-22T09:57:17.902389844Z I1122 09:57:17.902291 1 main.go:210] Starting metrics server: 127.0.0.1:8081
2022-11-22T09:57:17.903191857Z I1122 09:57:17.903133 1 main.go:66] levelinfomsgTLS is disabled.http2false
2022-11-22T09:57:17.906272505Z I1122 09:57:17.906224 1 builder.go:191] Active resources: certificatesigningrequests,configmaps,cronjobs,daemonsets,deployments,endpoints,horizontalpodautoscalers,ingresses,jobs,leases,limitranges,mutatingwebhookconfigurations,namespaces,networkpolicies,nodes,persistentvolumeclaims,persistentvolumes,poddisruptionbudgets,pods,replicasets,replicationcontrollers,resourcequotas,secrets,services,statefulsets,storageclasses,validatingwebhookconfigurations,volumeattachments
2022-11-22T09:57:17.917758187Z E1122 09:57:17.917560 1 runtime.go:78] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
2022-11-22T09:57:17.917758187Z goroutine 24 [running]:
2022-11-22T09:57:17.917758187Z k8s.io/apimachinery/pkg/util/runtime.logPanic(

{0x1635600, 0x2696e10})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:74 +0x7d
2022-11-22T09:57:17.917758187Z k8s.io/apimachinery/pkg/util/runtime.HandleCrash({0x0, 0x0, 0xfffffffe})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:48 +0x75
2022-11-22T09:57:17.917758187Z panic({0x1635600, 0x2696e10}

)
2022-11-22T09:57:17.917758187Z /usr/lib/golang/src/runtime/panic.go:1038 +0x215
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/internal/store.ingressMetricFamilies.func6(0x40)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/internal/store/ingress.go:136 +0x189
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/internal/store.wrapIngressFunc.func1(

{0x17fe520, 0xc00063b590})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/internal/store/ingress.go:175 +0x49
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/pkg/metric_generator.(*FamilyGenerator).Generate(...)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/pkg/metric_generator/generator.go:67
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/pkg/metric_generator.ComposeMetricGenFuncs.func1({0x17fe520, 0xc00063b590}

)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/pkg/metric_generator/generator.go:107 +0xd8
~~~

Logs are attached to the support case

Description of problem:

In a 4.11 cluster with only openshift-samples enabled, the 4.12 introduced optional COs console and insights are installed. While upgrading to 4.12, CVO considers them to be disabled explicitly and skips reconciling them. So these COs are not upgraded to 4.12.

Installed COs cannot be disabled, so CVO is supposed to implicitly enable them.


$ oc get clusterversion -oyaml
{
  "apiVersion": "config.openshift.io/v1",
     "kind": "ClusterVersion",
     "metadata": {
         "creationTimestamp": "2022-09-30T05:02:31Z",
         "generation": 3,
         "name": "version",
         "resourceVersion": "134808",
         "uid": "bd95473f-ffda-402d-8fe3-74f852a9d6eb"
     },
     "spec": {
         "capabilities": {
             "additionalEnabledCapabilities": [
                 "openshift-samples"
             ],
             "baselineCapabilitySet": "None"
         },
         "channel": "stable-4.11",
         "clusterID": "8eda5167-a730-4b39-be1d-214a80506d34",
         "desiredUpdate": {
             "force": true,
             "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
             "version": ""
         }
     },
     "status": {
         "availableUpdates": null,
         "capabilities": {
             "enabledCapabilities": [
                 "openshift-samples"
             ],
             "knownCapabilities": [
                 "Console",
                 "Insights",
                 "Storage",
                 "baremetal",
                 "marketplace",
                 "openshift-samples"
             ]
         },
         "conditions": [
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Unable to retrieve available updates: currently reconciling cluster version 4.12.0-0.nightly-2022-09-28-204419 not found in the \"stable-4.11\" channel",
                 "reason": "VersionNotFound",
                 "status": "False",
                 "type": "RetrievedUpdates"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Capabilities match configured spec",
                 "reason": "AsExpected",
                 "status": "False",
                 "type": "ImplicitlyEnabledCapabilities"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Payload loaded version=\"4.12.0-0.nightly-2022-09-28-204419\" image=\"registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc\" architecture=\"amd64\"",
                 "reason": "PayloadLoaded",
                 "status": "True",
                 "type": "ReleaseAccepted"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:23:18Z",
                 "message": "Done applying 4.12.0-0.nightly-2022-09-28-204419",
                 "status": "True",
                 "type": "Available"
             },
             {
                 "lastTransitionTime": "2022-09-30T07:05:42Z",
                 "status": "False",
                 "type": "Failing"
             },
             {
                 "lastTransitionTime": "2022-09-30T07:41:53Z",
                 "message": "Cluster version is 4.12.0-0.nightly-2022-09-28-204419",
                 "status": "False",
                 "type": "Progressing"
             }
         ],
         "desired": {
             "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
             "version": "4.12.0-0.nightly-2022-09-28-204419"
         },
         "history": [
             {
                 "completionTime": "2022-09-30T07:41:53Z",
                 "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
                 "startedTime": "2022-09-30T06:42:01Z",
                 "state": "Completed",
                 "verified": false,
                 "version": "4.12.0-0.nightly-2022-09-28-204419"
             },
             {
                 "completionTime": "2022-09-30T05:23:18Z",
                 "image": "registry.ci.openshift.org/ocp/release@sha256:5a6f6d1bf5c752c75d7554aa927c06b5ea0880b51909e83387ee4d3bca424631",
                 "startedTime": "2022-09-30T05:02:33Z",
                 "state": "Completed",
                 "verified": false,
                 "version": "4.11.0-0.nightly-2022-09-29-191451"
             }
         ],
         "observedGeneration": 3,
         "versionHash": "CSCJ2fxM_2o="
     }
 }

$ oc get co
 NAME                                       VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      93m     
cloud-controller-manager                   4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h56m   
cloud-credential                           4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h59m   
cluster-autoscaler                         4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h53m   
config-operator                            4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
console                                    4.11.0-0.nightly-2022-09-29-191451   True        False         False      3h45m   
control-plane-machine-set                  4.12.0-0.nightly-2022-09-28-204419   True        False         False      117m    
csi-snapshot-controller                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
dns                                        4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h53m   
etcd                                       4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h52m   
image-registry                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h46m   
ingress                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      151m    
insights                                   4.11.0-0.nightly-2022-09-29-191451   True        False         False      3h48m   
kube-apiserver                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h50m   
kube-controller-manager                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h51m   
kube-scheduler                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h51m   
kube-storage-version-migrator              4.12.0-0.nightly-2022-09-28-204419   True        False         False      91m     
machine-api                                4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h50m   
machine-approver                           4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
machine-config                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h52m   
monitoring                                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h44m   
network                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h55m   
node-tuning                                4.12.0-0.nightly-2022-09-28-204419   True        False         False      113m    
openshift-apiserver                        4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h48m   
openshift-controller-manager               4.12.0-0.nightly-2022-09-28-204419   True        False         False      113m    
openshift-samples                          4.12.0-0.nightly-2022-09-28-204419   True        False         False      116m    
operator-lifecycle-manager                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
operator-lifecycle-manager-catalog         4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
operator-lifecycle-manager-packageserver   4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h48m   
service-ca                                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
storage                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-28-204419

How reproducible:

Always

Steps to Reproduce:

1. Install a 4.11 cluster with only openshift-samples enabled
2. Upgrade to 4.12
3.

Actual results:

The 4.12 introduced optional CO console and insights are not upgraded to 4.12

Expected results:

All the installed COs get upgraded

Additional info:

 

Description of problem:

openshift-install does not detect releaseImage mismatches between cluster-image-set.yaml and registries.conf

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1.Create ZTP inputs for image generation where registries.conf does not have any source matching the binary releaseimage (the binary image which can be obtained by running "openshift-install version". You can also set this value in ZTP manifest cluster-image-set.yaml 
2.run openshift-install agent create image

Actual results:

Image is generated with no warnings

Expected results:

Image is generated with warning message - "The ImageContentSources configuration in install-config.yaml should have at-least one source field matching the releaseImage value %s", releaseImagePath

 

Additional info:

 

 

This is a clone of issue OCPBUGS-3027. The following is the description of the original issue:

Description of problem:

When running the console in development mode per https://github.com/openshift/console#frontend-development, metrics do not load on the cluster overview, pods list page, pod details page (Metrics tab is missing), etc.

Samuel Padgett suspects the changes in https://github.com/openshift/console/commit/0bd839da219462ea585183de1c856fb60e9f96fb are related.

This is a clone of issue OCPBUGS-6175. The following is the description of the original issue:

Description of problem:

When the cluster is configured with Proxy the swift client in the image registry operator is not using the proxy to authenticate with OpenStack, so it's unable to reach the OpenStack API. This issue became evident since recently the support was added to not fallback to cinder in case swift is available[1].

[1]https://github.com/openshift/cluster-image-registry-operator/pull/819

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Deploy a cluster with proxy and restricted installation
2. 
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-2727. The following is the description of the original issue:

Description of problem:

CVO recently introduced a new precondition RecommendedUpdate[1]. While we request an upgrade to a version which is not an available update, the precondition got UnknownUpdate and blocks the upgrade.

# oc get clusterversion/version -ojson | jq -r '.status.availableUpdates'null

# oc get clusterversion/version -ojson | jq -r '.status.conditions[]|select(.type == "ReleaseAccepted")'
{
  "lastTransitionTime": "2022-10-20T08:16:59Z",
  "message": "Preconditions failed for payload loaded version=\"4.12.0-0.nightly-multi-2022-10-18-153953\" image=\"quay.io/openshift-release-dev/ocp-release-nightly@sha256:71c1912990db7933bcda1d6914228e8b9b0d36ddba265164ee33a1bca06fe695\": Precondition \"ClusterVersionRecommendedUpdate\" failed because of \"UnknownUpdate\": RetrievedUpdates=False (VersionNotFound), so the recommended status of updating from 4.12.0-0.nightly-multi-2022-10-18-091108 to 4.12.0-0.nightly-multi-2022-10-18-153953 is unknown.",
  "reason": "PreconditionChecks",
  "status": "False",
  "type": "ReleaseAccepted"
}


[1]https://github.com/openshift/cluster-version-operator/pull/841/

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-multi-2022-10-18-091108

How reproducible:

Always

Steps to Reproduce:

1. Install a 4.12 cluster
2. Upgrade to a version which is not in the available update
# oc adm upgrade --allow-explicit-upgrade --to-image=quay.io/openshift-release-dev/ocp-release-nightly@sha256:71c1912990db7933bcda1d6914228e8b9b0d36ddba265164ee33a1bca06fe695warning: The requested upgrade image is not one of the available updates.You have used --allow-explicit-upgrade for the update to proceed anywayRequesting update to release image quay.io/openshift-release-dev/ocp-release-nightly@sha256:71c1912990db7933bcda1d6914228e8b9b0d36ddba265164ee33a1bca06fe695 

Actual results:

CVO precondition check fails and blocks upgrade

Expected results:

Upgrade proceeds

Additional info:

 

OVS 2.17+ introduced an optimization of "weak references" to substantially speed up database snapshots. in some cases weak references may leak memory; to aforementioned commit fixes that and has been pulled into ovs2.17-62 and later.

This is a clone of issue OCPBUGS-4252. The following is the description of the original issue:

Description of problem: When visiting the Terminal tab of a Node details page, an error is displayed instead of the terminal

Steps to Reproduce:
1. Go to the Terminal tab of a Node details page (e.g., /k8s/cluster/nodes/ip-10-0-129-13.ec2.internal/terminal)
2. Note the error alert that appears on the page instead of the terminal.

Description of problem:

Upgrade OCP 4.11 --> 4.12 fails with one 'NotReady,SchedulingDisabled' node and MachineConfigDaemonFailed.

Version-Release number of selected component (if applicable):

Upgrade from OCP 4.11.0-0.nightly-2022-09-19-214532 on top of OSP RHOS-16.2-RHEL-8-20220804.n.1 to 4.12.0-0.nightly-2022-09-20-040107.

Network Type: OVNKubernetes

How reproducible:

Twice out of two attempts.

Steps to Reproduce:

1. Install OCP 4.11.0-0.nightly-2022-09-19-214532 (IPI) on top of OSP RHOS-16.2-RHEL-8-20220804.n.1.
   The cluster is up and running with three workers:
   $ oc get clusterversion
   NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
   version   4.11.0-0.nightly-2022-09-19-214532   True        False         51m     Cluster version is 4.11.0-0.nightly-2022-09-19-214532

2. Run the OC command to upgrade to 4.12.0-0.nightly-2022-09-20-040107:
$ oc adm upgrade --to-image=registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-09-20-040107 --allow-explicit-upgrade --force=true
warning: Using by-tag pull specs is dangerous, and while we still allow it in combination with --force for backward compatibility, it would be much safer to pass a by-digest pull spec instead
warning: The requested upgrade image is not one of the available updates.You have used --allow-explicit-upgrade for the update to proceed anyway
warning: --force overrides cluster verification of your supplied release image and waives any update precondition failures.
Requesting update to release image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-09-20-040107 

3. The upgrade is not succeeds: [0]
$ oc get clusterversion
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.0-0.nightly-2022-09-19-214532   True        True          17h     Unable to apply 4.12.0-0.nightly-2022-09-20-040107: wait has exceeded 40 minutes for these operators: network

One node degrided to 'NotReady,SchedulingDisabled' status:
$ oc get nodes
NAME                          STATUS                        ROLES    AGE   VERSION
ostest-9vllk-master-0         Ready                         master   19h   v1.24.0+07c9eb7
ostest-9vllk-master-1         Ready                         master   19h   v1.24.0+07c9eb7
ostest-9vllk-master-2         Ready                         master   19h   v1.24.0+07c9eb7
ostest-9vllk-worker-0-4x4pt   NotReady,SchedulingDisabled   worker   18h   v1.24.0+3882f8f
ostest-9vllk-worker-0-h6kcs   Ready                         worker   18h   v1.24.0+3882f8f
ostest-9vllk-worker-0-xhz9b   Ready                         worker   18h   v1.24.0+3882f8f

$ oc get pods -A | grep -v -e Completed -e Running
NAMESPACE                                          NAME                                                         READY   STATUS      RESTARTS       AGE
openshift-openstack-infra                          coredns-ostest-9vllk-worker-0-4x4pt                          0/2     Init:0/1    0              18h
 
$ oc get events
LAST SEEN   TYPE      REASON                                        OBJECT            MESSAGE
7m15s       Warning   OperatorDegraded: MachineConfigDaemonFailed   /machine-config   Unable to apply 4.12.0-0.nightly-2022-09-20-040107: failed to apply machine config daemon manifests: error during waitForDaemonsetRollout: [timed out waiting for the condition, daemonset machine-config-daemon is not ready. status: (desired: 6, updated: 6, ready: 5, unavailable: 1)]
7m15s       Warning   MachineConfigDaemonFailed                     /machine-config   Cluster not available for [{operator 4.11.0-0.nightly-2022-09-19-214532}]: failed to apply machine config daemon manifests: error during waitForDaemonsetRollout: [timed out waiting for the condition, daemonset machine-config-daemon is not ready. status: (desired: 6, updated: 6, ready: 5, unavailable: 1)]

$ oc get co
NAME                                       VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.12.0-0.nightly-2022-09-20-040107   True        False         False      18h    
baremetal                                  4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
cloud-controller-manager                   4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
cloud-credential                           4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
cluster-autoscaler                         4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
config-operator                            4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
console                                    4.12.0-0.nightly-2022-09-20-040107   True        False         False      18h    
control-plane-machine-set                  4.12.0-0.nightly-2022-09-20-040107   True        False         False      17h    
csi-snapshot-controller                    4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
dns                                        4.12.0-0.nightly-2022-09-20-040107   True        True          False      19h     DNS "default" reports Progressing=True: "Have 5 available node-resolver pods, want 6."
etcd                                       4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
image-registry                             4.12.0-0.nightly-2022-09-20-040107   True        True          False      18h     Progressing: The registry is ready...
ingress                                    4.12.0-0.nightly-2022-09-20-040107   True        False         False      18h    
insights                                   4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
kube-apiserver                             4.12.0-0.nightly-2022-09-20-040107   True        True          False      18h     NodeInstallerProgressing: 1 nodes are at revision 11; 2 nodes are at revision 13
kube-controller-manager                    4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
kube-scheduler                             4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
kube-storage-version-migrator              4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
machine-api                                4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
machine-approver                           4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
machine-config                             4.11.0-0.nightly-2022-09-19-214532   False       True          True       16h     Cluster not available for [{operator 4.11.0-0.nightly-2022-09-19-214532}]: failed to apply machine config daemon manifests: error during waitForDaemonsetRollout: [timed out waiting for the condition, daemonset machine-config-daemon is not ready. status: (desired: 6, updated: 6, ready: 5, unavailable: 1)]
marketplace                                4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
monitoring                                 4.12.0-0.nightly-2022-09-20-040107   True        False         False      18h    
network                                    4.12.0-0.nightly-2022-09-20-040107   True        True          True       19h     DaemonSet "/openshift-ovn-kubernetes/ovnkube-node" rollout is not making progress - last change 2022-09-20T14:16:13Z...
node-tuning                                4.12.0-0.nightly-2022-09-20-040107   True        False         False      17h    
openshift-apiserver                        4.12.0-0.nightly-2022-09-20-040107   True        False         False      18h    
openshift-controller-manager               4.12.0-0.nightly-2022-09-20-040107   True        False         False      17h    
openshift-samples                          4.12.0-0.nightly-2022-09-20-040107   True        False         False      17h    
operator-lifecycle-manager                 4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
operator-lifecycle-manager-catalog         4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
operator-lifecycle-manager-packageserver   4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
service-ca                                 4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
storage                                    4.12.0-0.nightly-2022-09-20-040107   True        True          False      19h     ManilaCSIDriverOperatorCRProgressing: ManilaDriverNodeServiceControllerProgressing: Waiting for DaemonSet to deploy node pods...

[0] http://pastebin.test.redhat.com/1074531

Actual results:

OCP 4.11 --> 4.12 upgrade fails.

Expected results:

OCP 4.11 --> 4.12 upgrade success.

Additional info:

Attached logs of the NotReady node - [^journalctl_ostest-9vllk-worker-0-4x4pt.log.tar.gz]

Description of problem:

The Alertmanager silence create / edit form got a new "Negative matcher" option in 4.12 (see https://issues.redhat.com/browse/OCPBUGSM-47734). However, there is nothing to explain what this option means and it will likely not be obvious from the label alone unless you are already quite familiar with Alertmanager.

After discussion with the docs team, it was decided that adding some explanation in context in the UI would be much better than adding an explanation to the documentation. 

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Go to Admin perspective
2. Go to Observe > Alerting > Silences page
3. Click on the Create button ("Negative matcher" option is shown with no explanation)

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-3668. The following is the description of the original issue:

Description of problem:

Installer fails to install 4.12.0-rc.0 on VMware IPI with the script that worked with prior OCP versions.
Error happens during Terraform prepare step when gathering information in the "Platform Provisioning Check". It looks like a permission issue, but we're using the VCenter administrator account. I double checked and that account has all the necessary permissions.

Version-Release number of selected component (if applicable):

OCP installer 4.12.0-rc.0
VSphere & Vcenter 7.0.3 - no pending updates

How reproducible:

always - we observed this already in the nightlies, but wanted to wait for a RC to confirm

Steps to Reproduce:

1. Try to install using the openshift-install binary

Actual results:

Fails during the preparation step

Expected results:

Installs the cluster ;)

Additional info:

This runs in our CICD pipeline, let me know if you want to need access to the full run log:
https://gitlab.consulting.redhat.com/cblum/storage-ocs-lab/-/jobs/219304

This includes the install-config.yaml, all component versions and the full debug log output

We do not have a well defined method to find these all just yet, identifying that would be a good first step.

At runtime we know the version of OpenShift that we're installing, so we can dynamically generate the OS_IMAGES environment variable to point at the image for the current release. This will prevent having to add to the hard-coded list for every release.

Description of problem:

health_statuses_insights metrics is showing disabled rules in "total". In other fields, it shows the correct amount.
In the code linked below, we can see that the "Disabled" rules are only skipped during the value assigning of TotalRisk

https://github.com/openshift/insights-operator/blob/master/pkg/insights/insightsreport/insightsreport.go#L268

How reproducible:

Always

Steps to Reproduce:

1. Upload a fake archive to trigger health checks (for example with rule CVE_2020_8555_kubernetes)
2. Disable one of the rules through https://console.redhat.com/api/insights-results-aggregator/v1/clusters/{cluster.id}/rules/{rule}/error_key/{error_key}/disable
3. Create support secret and set endpoint="https://httpstat.us/200"
4. restart insights operator
5. wait for alerts to trigger
6. Check health_statuses_insights metrics. 

rule:

ccx_rules_ocp.external.rules.ocp_version_end_of_life.report

error_key:

OCP4X_BEYOND_EOL

 

Actual results:

"moderate" health_statuses_insights shows 2 triggers
"total" shows 3. Therefore, it is accounting for the deactivated rule.

Expected results:

"moderate" health_statuses_insights shows 2 triggers
"total" health_statuses_insights shows 2 triggers (doesn't account for deactivated rule)

Additional info:

If there is any issue in triggering this events, you may contact me and I can help with the steps.

 

Description of problem:

prometheus-k8s-0 ends in CrashLoopBackOff with evel=error err="opening storage failed: /prometheus/chunks_head/000002: invalid magic number 0" on SNO after hard reboot tests

Version-Release number of selected component (if applicable):

4.11.6

How reproducible:

Not always, after ~10 attempts

Steps to Reproduce:

1. Deploy SNO with Telco DU profile applied
2. Hard reboot node via out of band interface
3. oc -n openshift-monitoring get pods prometheus-k8s-0 

Actual results:

NAME               READY   STATUS             RESTARTS          AGE
prometheus-k8s-0   5/6     CrashLoopBackOff   125 (4m57s ago)   5h28m

Expected results:

Running

Additional info:

Attaching must-gather.

The pod recovers successfully after deleting/re-creating.


[kni@registry.kni-qe-0 ~]$ oc -n openshift-monitoring logs prometheus-k8s-0
ts=2022-09-26T14:54:01.919Z caller=main.go:552 level=info msg="Starting Prometheus Server" mode=server version="(version=2.36.2, branch=rhaos-4.11-rhel-8, revision=0d81ba04ce410df37ca2c0b1ec619e1bc02e19ef)"
ts=2022-09-26T14:54:01.919Z caller=main.go:557 level=info build_context="(go=go1.18.4, user=root@371541f17026, date=20220916-14:15:37)"
ts=2022-09-26T14:54:01.919Z caller=main.go:558 level=info host_details="(Linux 4.18.0-372.26.1.rt7.183.el8_6.x86_64 #1 SMP PREEMPT_RT Sat Aug 27 22:04:33 EDT 2022 x86_64 prometheus-k8s-0 (none))"
ts=2022-09-26T14:54:01.919Z caller=main.go:559 level=info fd_limits="(soft=1048576, hard=1048576)"
ts=2022-09-26T14:54:01.919Z caller=main.go:560 level=info vm_limits="(soft=unlimited, hard=unlimited)"
ts=2022-09-26T14:54:01.921Z caller=web.go:553 level=info component=web msg="Start listening for connections" address=127.0.0.1:9090
ts=2022-09-26T14:54:01.922Z caller=main.go:989 level=info msg="Starting TSDB ..."
ts=2022-09-26T14:54:01.924Z caller=tls_config.go:231 level=info component=web msg="TLS is disabled." http2=false
ts=2022-09-26T14:54:01.926Z caller=main.go:848 level=info msg="Stopping scrape discovery manager..."
ts=2022-09-26T14:54:01.926Z caller=main.go:862 level=info msg="Stopping notify discovery manager..."
ts=2022-09-26T14:54:01.926Z caller=manager.go:951 level=info component="rule manager" msg="Stopping rule manager..."
ts=2022-09-26T14:54:01.926Z caller=manager.go:961 level=info component="rule manager" msg="Rule manager stopped"
ts=2022-09-26T14:54:01.926Z caller=main.go:899 level=info msg="Stopping scrape manager..."
ts=2022-09-26T14:54:01.926Z caller=main.go:858 level=info msg="Notify discovery manager stopped"
ts=2022-09-26T14:54:01.926Z caller=main.go:891 level=info msg="Scrape manager stopped"
ts=2022-09-26T14:54:01.926Z caller=notifier.go:599 level=info component=notifier msg="Stopping notification manager..."
ts=2022-09-26T14:54:01.926Z caller=main.go:844 level=info msg="Scrape discovery manager stopped"
ts=2022-09-26T14:54:01.926Z caller=manager.go:937 level=info component="rule manager" msg="Starting rule manager..."
ts=2022-09-26T14:54:01.926Z caller=main.go:1120 level=info msg="Notifier manager stopped"
ts=2022-09-26T14:54:01.926Z caller=main.go:1129 level=error err="opening storage failed: /prometheus/chunks_head/000002: invalid magic number 0"

Tracker bug for bootimage bump in 4.12. This bug should block bugs which need a bootimage bump to fix.

The previous tracker is OCPBUGS-561.

Description of problem:

This bug is a copy of https://bugzilla.redhat.com/show_bug.cgi?id=2137616 as fix needs to go on OCP side.
For must gather and attached screenshots please refer the bugzilla.
Add Capacity button does not exist after upgrade OCP version [OCP4.11->OCP4.12]

Version-Release number of selected component (if applicable):

ODF Version:4.11.3-3
OCP Version: 4.12.0-0.nightly-2022-10-24-103753
Provider: AWS

How reproducible:

 

Steps to Reproduce:

1.Install ODF4.11 +OCP4.11
2.Upgrade OCP4.11 to OCP4.12
3.Log in to the OpenShift Web Console.
4.Click Operators → Installed Operators.
5.Click OpenShift Data Foundation Operator.
6.Click the Storage Systems tab.
7.Click the Action Menu (⋮) on the far right of the storage system name to extend the options menu.
"Add Capacity" button does not exist on menu.
*Attached Screenshot 

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-4026. The following is the description of the original issue:

Description of problem:
There is an endless re-render loop and a browser feels slow to stuck when opening the add page or the topology.

Saw also endless API calls to /api/kubernetes/apis/binding.operators.coreos.com/v1alpha1/bindablekinds/bindable-kinds

Version-Release number of selected component (if applicable):
1. Console UI 4.12-4.13 (master)
2. Service Binding Operator (tested with 1.3.1)

How reproducible:
Always with installed SBO

But the "stuck feeling" depends on the browser (Firefox feels more stuck) and your locale machine power

Steps to Reproduce:
1. Install Service Binding Operator
2. Create or update the BindableKinds resource "bindable-kinds"

apiVersion: binding.operators.coreos.com/v1alpha1
kind: BindableKinds
metadata:
  name: bindable-kinds

3. Open the browser console log
4. Open the console UI and navigate to the add page

Actual results:
1. Saw endless API calls to /api/kubernetes/apis/binding.operators.coreos.com/v1alpha1/bindablekinds/bindable-kinds
2. Browser feels slow and get stuck after some time
3. The page crashs after some time

Expected results:
1. The API call should be called just once
2. The add page should just work without feeling laggy
3. No crash

Additional info:
Get introduced after we watching the bindable-kinds resource with https://github.com/openshift/console/pull/11161

It looks like this happen only if the SBO is installed and the bindable-kinds resource exist, but doesn't contain any status.

The status list all available bindable resource types. I could not reproduce this by installing and uninstalling an operator, but you can manually create or update this resource as mentioned above.

Description of problem:

Setting up Github App from the console is lacking the required permission 
Events and Permissions: https://pipelinesascode.com/docs/install/github_apps/

Version-Release number of selected component (if applicable):
4.12

How reproducible:
Always

Steps to Reproduce:

1. Setup Github App from administrator perspective.
2. Create Repository and configure it to use the Github App method.

Actual results:
Creates Github App with limited permission.

Expected results:
Created Github App should contain all the required permission and should trigger the pipelinerun successfully on git events.

Additional info:

Console needs to update the default_events and default_permissions here it has to be matching with the CLI - refer this.

we need to update the  See Github permission section in the UI as well.

Description of problem:
ovnkube-trace fails on hypershift deployments:
https://bugzilla.redhat.com/show_bug.cgi?id=2066891#c8

getDatabaseURIs looks for pods with container ovnkube-master, and those don't exist in hypershift.

https://github.com/ovn-org/ovn-kubernetes/blob/6b8acf05cb6043ebdc42d9d36e700390baabea4a/go-controller/cmd/ovnkube-trace/ovnkube-trace.go#L540
~~~
// Returns nbAddress, sbAddress, protocol == "ssl", nil
func getDatabaseURIs(coreclient *corev1client.CoreV1Client, restconfig *rest.Config, ovnNamespace string) (string, string, bool, error) {
containerName := "ovnkube-master"
var err error

found := false
var podName string

listOptions := metav1.ListOptions{}
pods, err := coreclient.Pods(ovnNamespace).List(context.TODO(), listOptions)
if err != nil

{ return "", "", false, err }

for _, pod := range pods.Items {
for _, container := range pod.Spec.Containers {
if container.Name == containerName

{ found = true podName = pod.Name break }

}
}
if !found

{ klog.V(5).Infof("Cannot find ovnkube pods with container %s", containerName) return "", "", false, fmt.Errorf("cannot find ovnkube pods with container: %s", containerName) }

~~~

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1.
2.
3.

Actual results:

Expected results:

Additional info:

This is a clone of issue OCPBUGS-3278. The following is the description of the original issue:

Description of problem:

When doing openshift-install agent create image, one should not need to provide platform specific data like boot MAC addresses.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1.Create install-config with only VIPs in Baremetal platform section

apiVersion: v1
metadata:
  name: foo
baseDomain: test.metalkube.org
networking:
  clusterNetwork:
    - cidr: 10.128.0.0/14
      hostPrefix: 23
  machineNetwork:
    - cidr: 192.168.122.0/23
  networkType: OpenShiftSDN
  serviceNetwork:
    - 172.30.0.0/16
compute:
  - architecture: amd64
    hyperthreading: Enabled
    name: worker
    platform: {}
    replicas: 0
controlPlane:
  name: master
  replicas: 3
  hyperthreading: Enabled
  architecture: amd64
platform:
  baremetal:
    apiVIPs:
      - 192.168.122.10
    ingressVIPs:
      - 192.168.122.11
---
apiVersion: v1beta1
metadata:
  name: foo
rendezvousIP: 192.168.122.14

2.openshift-install agent create image

Actual results:

ERROR failed to write asset (Agent Installer ISO) to disk: cannot generate ISO image due to configuration errors 
ERROR failed to fetch Agent Installer ISO: failed to load asset "Install Config": failed to create install config: invalid "install-config.yaml" file: [platform.baremetal.hosts: Invalid value: []*baremetal.Host(nil): bare metal hosts are missing, platform.baremetal.Hosts: Required value: not enough hosts found (0) to support all the configured ControlPlane replicas (3)]

Expected results:

Image gets generated

Additional info:

We should go into install-config validation code, detect if we are doing agent-based installation and skip the hosts checks

Description of problem:

When trying to enable Hardware Backed Management Ports (e.g. Virtual functions) on BF2 in NIC mode OR any other MLX NICs (CX-6, CX-5) by setting the node_mgmt_port_netdev_flags flags to a VF in the CNO; then OVN-K Node will crash.

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

Always

Steps to Reproduce:

Start by enabling OvS HWOL and setting sriovnetworknodepolicy
https://docs.openshift.com/container-platform/4.11/networking/hardware_networks/configuring-hardware-offloading.html
1. Scale down CNO: oc scale --replicas=0 deploy/network-operator -n openshift-network-operator
2. Make changes to OVN-K node: oc edit daemonsets ovnkube-node -n openshift-ovn-kubernetes
    a. Find "node_mgmt_port_netdev_flags=" and replace it with something like this:
          node_mgmt_port_netdev_flags=
          if [[ ${K8S_NODE} != *"master"* ]]; then
                node_mgmt_port_netdev_flags="--ovnkube-node-mgmt-port-netdev=ens1f0v0"
          fi
     b. Additionally you have to add the "node_mgmt_port_netdev_flags"  to the " exec /usr/bin/ovnkube --init-node "${K8S_NODE}"" call in the same script. Since this is missing.
3. Save the edit.
4. Observe OVN-K node on baremetal worker nodes.

Actual results:

I0822 14:21:56.250285  496356 ovs.go:204] Exec(3): stderr: ""
I0822 14:21:56.250290  496356 node.go:310] Detected support for port binding with external IDs
I0822 14:21:56.250516  496356 management-port-dpu.go:181] Setup management port dpu host: ens1f0v0
F0822 14:21:56.250568  496356 ovnkube.go:133] failed to set management port name. file exists

Workaround is to go to the node and run this command: sudo ovs-vsctl del-port br-int ovn-k8s-mp0

Expected results:

There should not be any errors when changing node_mgmt_port_netdev_flags to a valid value.

Additional info:

Reported here: https://github.com/ovn-org/ovn-kubernetes/pull/3160
Discussed briefly here: https://issues.redhat.com/browse/OCPBUGS-4098
Fixed Upstream here: https://github.com/ovn-org/ovn-kubernetes/pull/3251

Description of problem:

seeing test failure due to panic in cvo here:

Undiagnosed panic detected in pod expand_less
              0s

                {  pods/openshift-cluster-version_cluster-version-operator-96cf55b5-rffgt_cluster-version-operator_previous.log.gz:E0915 18:38:42.763315       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
pods/openshift-cluster-version_cluster-version-operator-96cf55b5-rffgt_cluster-version-operator_previous.log.gz:E0915 18:38:42.763418       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)}

full error from logs:

/E0915 18:38:42.763315       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
goroutine 187 [running]:
k8s.io/apimachinery/pkg/util/runtime.logPanic({0x1934980?, 0x2bc6240})
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:75 +0x99
k8s.io/apimachinery/pkg/util/runtime.HandleCrash({0x0, 0x0, 0x4d2604?})
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:49 +0x75
panic({0x1934980, 0x2bc6240})
	/usr/lib/golang/src/runtime/panic.go:838 +0x207
github.com/openshift/cluster-version-operator/pkg/cvo.(*SyncWorker).calculateNext(0xc0015c6000, 0xc001df2000)
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/sync_worker.go:716 +0x14d
github.com/openshift/cluster-version-operator/pkg/cvo.(*SyncWorker).Start.func1()
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/sync_worker.go:575 +0x2a9
k8s.io/apimachinery/pkg/util/wait.BackoffUntil.func1(0x10000000000?)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:155 +0x3e
k8s.io/apimachinery/pkg/util/wait.BackoffUntil(0xc001df2000?, {0x1e44e60, 0xc002739f50}, 0x1, 0xc00058e0c0)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:156 +0xb6
k8s.io/apimachinery/pkg/util/wait.JitterUntil(0x0?, 0x989680, 0x0, 0x60?, 0x0?)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:133 +0x89
k8s.io/apimachinery/pkg/util/wait.Until(...)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:90
github.com/openshift/cluster-version-operator/pkg/cvo.(*SyncWorker).Start(0xc0015c6000?, {0x1e5eb30?, 0xc0000cacc0?}, 0x10?, {0x0?, 0x0?}, {0x0?, 0x0?})
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/sync_worker.go:556 +0x145
github.com/openshift/cluster-version-operator/pkg/cvo.(*Operator).Run.func2()
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/cvo.go:387 +0x83
created by github.com/openshift/cluster-version-operator/pkg/cvo.(*Operator).Run
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/cvo.go:385 +0x4af
E0915 18:38:42.763418       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference) 

 

Version-Release number of selected component (if applicable):

 

How reproducible:

currently unsure hit this in a test run, but shouldn't ever panic.

Steps to Reproduce:

1.
2.
3.

Actual results:

panic in cvo pod

Expected results:

no panic in cvo pod

Additional info:

 

Description of problem:

When enabling OvS HWOL on 4.12.0 nightly, traffic does not pass between pods.

Version-Release number of selected component (if applicable):

4.12.0 nightly

How reproducible:

Always

Steps to Reproduce:

1. Create 2 pods with sriov and try to ping between them (same node or different node)

Actual results:

No Traffic Passes (Ping or other)

Expected results:

Traffic Passes (Ping or other)

Additional info:

Missing this commit in 4.12 branch
https://github.com/openshift/ovn-kubernetes/commit/37c6c1d7039fd4c8f3cca560691a254e720172de

This is a clone of issue OCPBUGS-7102. The following is the description of the original issue:

Description of problem:

https://github.com/openshift/operator-framework-olm/blob/7ec6b948a148171bd336750fed98818890136429/staging/operator-lifecycle-manager/pkg/controller/operators/olm/plugins/downstream_csv_namespace_labeler_plugin_test.go#L309

has a dependency on creation of a next-version release branch.

 

Version-Release number of selected component (if applicable):

4.13

How reproducible:

 

Steps to Reproduce:

1. clone operator-framework/operator-framework-olm
2. make unit/olm
3. deal with a really bumpy first-time kubebuilder/envtest install experience
4. profit

 

 

Actual results:

error

Expected results:

pass

Additional info:

 

 

Not all of the errors reported by the assisted API (and shown in the wait-for bootstrap complete output) actually require user action.

Some appear when the agents first register but resolve themselves relatively quickly in the natural course of events.

Some, like the availability of NTP, don't block the installation from proceeding at all.

We need to think about the best ways of exposing this information to the user.

Grafana has been removed in 4.11 and we can safely remove any logic in CMO that deals with Grafana (except dashboards since they are used by OCP console).

Another point to clarify is to communicate to ProdSec and ART that Grafana isn't part of OCP anymore.

 – NOT A BUG –
This was a story, but CI is not working for OLM project, so moved to OCPBUGS where it is. 

----------------------------

upstream the `opm alpha diff` functionality moved to `oc-mirror` team by a non-RH actor.

This story is to track downstreaming the two PRs.

The only thing to verify here is that there is no more `opm alpha diff` command. 

Other changes in the PRs are to externalize some interfaces and implement an undocumented alpha-level internal channel-level property list.

 

Description of problem:

cluster-version-operator pod crashloop during the bootstrap process might be leading to a longer bootstrap process causing the installer to timeout and fail.

The cluster-version-operator pod is continuously restarting due to a go panic. The bootstrap process fails due to the timeout although it completes the process correctly after more time, once the cluster-version-operator pod runs correctly.

$ oc -n openshift-cluster-version logs -p cluster-version-operator-754498df8b-5gll8
I0919 10:25:05.790124       1 start.go:23] ClusterVersionOperator 4.12.0-202209161347.p0.gc4fd1f4.assembly.stream-c4fd1f4                                                                                                                    
F0919 10:25:05.791580       1 start.go:29] error: Get "https://127.0.0.1:6443/apis/config.openshift.io/v1/featuregates/cluster": dial tcp 127.0.0.1:6443: connect: connection refused                                                        
goroutine 1 [running]:
k8s.io/klog/v2.stacks(0x1)
        /go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/klog/v2/klog.go:860 +0x8a
k8s.io/klog/v2.(*loggingT).output(0x2bee180, 0x3, 0x0, 0xc00017d5e0, 0x1, {0x22e9abc?, 0x1?}, 0x2beed80?, 0x0)
        /go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/klog/v2/klog.go:825 +0x686
k8s.io/klog/v2.(*loggingT).printfDepth(0x2bee180, 0x0?, 0x0, {0x0, 0x0}, 0x1?, {0x1b9cff0, 0x9}, {0xc000089140, 0x1, ...})                                                                                                                   
        /go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/klog/v2/klog.go:630 +0x1f2
k8s.io/klog/v2.(*loggingT).printf(...)
        /go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/klog/v2/klog.go:612
k8s.io/klog/v2.Fatalf(...)
        /go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/klog/v2/klog.go:1516
main.init.3.func1(0xc00012ac80?, {0x1b96f60?, 0x6?, 0x6?})
        /go/src/github.com/openshift/cluster-version-operator/cmd/start.go:29 +0x1e6
github.com/spf13/cobra.(*Command).execute(0xc00012ac80, {0xc0002fea20, 0x6, 0x6})
        /go/src/github.com/openshift/cluster-version-operator/vendor/github.com/spf13/cobra/command.go:860 +0x663
github.com/spf13/cobra.(*Command).ExecuteC(0x2bd52a0)
        /go/src/github.com/openshift/cluster-version-operator/vendor/github.com/spf13/cobra/command.go:974 +0x3b4
github.com/spf13/cobra.(*Command).Execute(...)
        /go/src/github.com/openshift/cluster-version-operator/vendor/github.com/spf13/cobra/command.go:902
main.main()
        /go/src/github.com/openshift/cluster-version-operator/cmd/main.go:29 +0x46

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-18-234318

How reproducible:

Most of the times, with any network type and installation type (IPI, UPI and proxy).

Steps to Reproduce:

1. Install OCP 4.12 IPI
   $ openshift-install create cluster
2. Wait until bootstrap is completed

Actual results:

[...]
level=error msg="Bootstrap failed to complete: timed out waiting for the condition"
level=error msg="Failed to wait for bootstrapping to complete. This error usually happens when there is a problem with control plane hosts that prevents the control plane operators from creating the control plane."
NAMESPACE                                          NAME                                                         READY   STATUS             RESTARTS        AGE 
openshift-cluster-version                          cluster-version-operator-754498df8b-5gll8                    0/1     CrashLoopBackOff   7 (3m21s ago)   24m 
openshift-image-registry                           image-registry-94fd8b75c-djbxb                               0/1     Pending            0               6m44s 
openshift-image-registry                           image-registry-94fd8b75c-ft66c                               0/1     Pending            0               6m44s 
openshift-ingress                                  router-default-64fbb749b4-cmqgw                              0/1     Pending            0               13m   
openshift-ingress                                  router-default-64fbb749b4-mhtqx                              0/1     Pending            0               13m   
openshift-monitoring                               prometheus-operator-admission-webhook-6d8cb95cf7-6jn5q       0/1     Pending            0               14m 
openshift-monitoring                               prometheus-operator-admission-webhook-6d8cb95cf7-r6nnk       0/1     Pending            0               14m 
openshift-network-diagnostics                      network-check-source-8758bd6fc-vzf5k                         0/1     Pending            0               18m 
openshift-operator-lifecycle-manager               collect-profiles-27726375-hlq89                              0/1     Pending            0               21m 
$ oc -n openshift-cluster-version describe pod cluster-version-operator-754498df8b-5gll8
Name:                 cluster-version-operator-754498df8b-5gll8
Namespace:            openshift-cluster-version                                                            
Priority:             2000000000              
Priority Class Name:  system-cluster-critical                                                       
Node:                 ostest-4gtwr-master-1/10.196.0.68
Start Time:           Mon, 19 Sep 2022 10:17:41 +0000                       
Labels:               k8s-app=cluster-version-operator
                      pod-template-hash=754498df8b
Annotations:          openshift.io/scc: hostaccess 
Status:               Running                      
IP:                   10.196.0.68
IPs:                 
  IP:           10.196.0.68
Controlled By:  ReplicaSet/cluster-version-operator-754498df8b
Containers:        
  cluster-version-operator:
    Container ID:  cri-o://1e2879600c89baabaca68c1d4d0a563d4b664c507f0617988cbf9ea7437f0b27
    Image:         registry.ci.openshift.org/ocp/release@sha256:2e38cd73b402a990286829aebdf00aa67a5b99124c61ec2f4fccd1135a1f0c69                                                                                                             
    Image ID:      registry.ci.openshift.org/ocp/release@sha256:2e38cd73b402a990286829aebdf00aa67a5b99124c61ec2f4fccd1135a1f0c69
    Port:          <none>                                                                                                                                                                                                                    
    Host Port:     <none>                                                                                                                                                                                                                    
    Args:                                                     
      start                                                                                                                                                                                                                                  
      --release-image=registry.ci.openshift.org/ocp/release@sha256:2e38cd73b402a990286829aebdf00aa67a5b99124c61ec2f4fccd1135a1f0c69                                                                                                          
      --enable-auto-update=false                                                                                                                                                                                                             
      --listen=0.0.0.0:9099                                                  
      --serving-cert-file=/etc/tls/serving-cert/tls.crt
      --serving-key-file=/etc/tls/serving-cert/tls.key                                                                                                                                                                                       
      --v=2             
    State:       Waiting 
      Reason:    CrashLoopBackOff
    Last State:  Terminated
      Reason:    Error
      Message:   I0919 10:33:07.798614       1 start.go:23] ClusterVersionOperator 4.12.0-202209161347.p0.gc4fd1f4.assembly.stream-c4fd1f4
F0919 10:33:07.800115       1 start.go:29] error: Get "https://127.0.0.1:6443/apis/config.openshift.io/v1/featuregates/cluster": dial tcp 127.0.0.1:6443: connect: connection refused
goroutine 1 [running]:                                                                                                                                                                                                                [43/497]
k8s.io/klog/v2.stacks(0x1)
  /go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/klog/v2/klog.go:860 +0x8a
k8s.io/klog/v2.(*loggingT).output(0x2bee180, 0x3, 0x0, 0xc000433ea0, 0x1, {0x22e9abc?, 0x1?}, 0x2beed80?, 0x0)
  /go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/klog/v2/klog.go:825 +0x686
k8s.io/klog/v2.(*loggingT).printfDepth(0x2bee180, 0x0?, 0x0, {0x0, 0x0}, 0x1?, {0x1b9cff0, 0x9}, {0xc0002d6630, 0x1, ...})
  /go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/klog/v2/klog.go:630 +0x1f2
k8s.io/klog/v2.(*loggingT).printf(...)
  /go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/klog/v2/klog.go:612
k8s.io/klog/v2.Fatalf(...)
  /go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/klog/v2/klog.go:1516
main.init.3.func1(0xc0003b4f00?, {0x1b96f60?, 0x6?, 0x6?})
  /go/src/github.com/openshift/cluster-version-operator/cmd/start.go:29 +0x1e6
github.com/spf13/cobra.(*Command).execute(0xc0003b4f00, {0xc000311980, 0x6, 0x6})
  /go/src/github.com/openshift/cluster-version-operator/vendor/github.com/spf13/cobra/command.go:860 +0x663
github.com/spf13/cobra.(*Command).ExecuteC(0x2bd52a0)
  /go/src/github.com/openshift/cluster-version-operator/vendor/github.com/spf13/cobra/command.go:974 +0x3b4
github.com/spf13/cobra.(*Command).Execute(...)
  /go/src/github.com/openshift/cluster-version-operator/vendor/github.com/spf13/cobra/command.go:902
main.main()
  /go/src/github.com/openshift/cluster-version-operator/cmd/main.go:29 +0x46      Exit Code:    255
      Started:      Mon, 19 Sep 2022 10:33:07 +0000
      Finished:     Mon, 19 Sep 2022 10:33:07 +0000
    Ready:          False
    Restart Count:  7
    Requests:
      cpu:     20m
      memory:  50Mi
    Environment:
      KUBERNETES_SERVICE_PORT:  6443
      KUBERNETES_SERVICE_HOST:  127.0.0.1
      NODE_NAME:                 (v1:spec.nodeName)
      CLUSTER_PROFILE:          self-managed-high-availability
    Mounts:
      /etc/cvo/updatepayloads from etc-cvo-updatepayloads (ro)
      /etc/ssl/certs from etc-ssl-certs (ro)
      /etc/tls/service-ca from service-ca (ro)
      /etc/tls/serving-cert from serving-cert (ro)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access (ro)
onditions:
  Type              Status
  Initialized       True
  Ready             False
  ContainersReady   False
  PodScheduled      True
Volumes:
  etc-ssl-certs:
    Type:          HostPath (bare host directory volume)
    Path:          /etc/ssl/certs
    HostPathType:
  etc-cvo-updatepayloads:
    Type:          HostPath (bare host directory volume)
    Path:          /etc/cvo/updatepayloads
    HostPathType:
  serving-cert:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  cluster-version-operator-serving-cert
    Optional:    false
  service-ca:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      openshift-service-ca.crt
    Optional:  false
  kube-api-access:
    Type:                    Projected (a volume that contains injected data from multiple sources)
    TokenExpirationSeconds:  3600
    ConfigMapName:           kube-root-ca.crt
    ConfigMapOptional:       <nil>
    DownwardAPI:             true
QoS Class:                   Burstable
Node-Selectors:              node-role.kubernetes.io/master=
Tolerations:                 node-role.kubernetes.io/master:NoSchedule op=Exists
                             node.kubernetes.io/memory-pressure:NoSchedule op=Exists
                             node.kubernetes.io/network-unavailable:NoSchedule op=Exists
                             node.kubernetes.io/not-ready:NoSchedule op=Exists
                             node.kubernetes.io/not-ready:NoExecute op=Exists for 120s
                             node.kubernetes.io/unreachable:NoExecute op=Exists for 120s
Events:
  Type     Reason            Age                   From               Message
  ----     ------            ----                  ----               -------
  Warning  FailedScheduling  25m                   default-scheduler  no nodes available to schedule pods
  Warning  FailedScheduling  21m                   default-scheduler  0/2 nodes are available: 2 node(s) had untolerated taint {node.cloudprovider.kubernetes.io/uninitialized: true}. preemption: 0/2 nodes are available: 2 Preemption is no
t helpful for scheduling.
  Normal   Scheduled         19m                   default-scheduler  Successfully assigned openshift-cluster-version/cluster-version-operator-754498df8b-5gll8 to ostest-4gtwr-master-1 by ostest-4gtwr-bootstrap
  Warning  FailedMount       17m                   kubelet            Unable to attach or mount volumes: unmounted volumes=[serving-cert], unattached volumes=[service-ca kube-api-access etc-ssl-certs etc-cvo-updatepayloads serving-cert]:
timed out waiting for the condition
  Warning  FailedMount       17m (x9 over 19m)     kubelet            MountVolume.SetUp failed for volume "serving-cert" : secret "cluster-version-operator-serving-cert" not found
  Normal   Pulling           15m                   kubelet            Pulling image "registry.ci.openshift.org/ocp/release@sha256:2e38cd73b402a990286829aebdf00aa67a5b99124c61ec2f4fccd1135a1f0c69"
  Normal   Pulled            15m                   kubelet            Successfully pulled image "registry.ci.openshift.org/ocp/release@sha256:2e38cd73b402a990286829aebdf00aa67a5b99124c61ec2f4fccd1135a1f0c69" in 7.481824271s
  Normal   Started           14m (x3 over 15m)     kubelet            Started container cluster-version-operator
  Normal   Created           14m (x4 over 15m)     kubelet            Created container cluster-version-operator
  Normal   Pulled            14m (x3 over 15m)     kubelet            Container image "registry.ci.openshift.org/ocp/release@sha256:2e38cd73b402a990286829aebdf00aa67a5b99124c61ec2f4fccd1135a1f0c69" already present on machine
  Warning  BackOff           4m22s (x52 over 15m)  kubelet            Back-off restarting failed container
  
  

Expected results:

No panic?

Additional info:

Seen in most of OCP on OSP QE CI jobs.

Attached [^must-gather-install.tar.gz]

Description of problem: The product name for Azure Red Hat OpenShift was incorrect in Customer Case Management (CCM). As a result, the console included this incorrect product name in order for the support case link to correctly route. https://issues.redhat.com/browse/CPCCM-9926 fixed the incorrect product name, so now the support case link for Azure needs to be updated to reflect the correct product name.

Description of the problem:

assisted-installer-controller Job does not apply Additional Root CA Trust Bundle

https://github.com/openshift/assisted-installer/issues/513

How reproducible:

https://github.com/openshift/assisted-installer/issues/513

Steps to reproduce:

1.  Create cluster with proxy and additional certificate bundle

2.Install

Actual results:

Controller failed to reach service cause of self signed certificate

Expected results:

Installation succeeds

Description of problem:

This is just a clone of https://bugzilla.redhat.com/show_bug.cgi?id=2105570 for purposes of cherry-picking.

Version-Release number of selected component (if applicable):

4.13

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:


Version-Release number of selected component (if applicable):


How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


This is a clone of issue OCPBUGS-2891. The following is the description of the original issue:

Deprovisioning can fail with the error:

level=warning msg=unrecognized elastic load balancing resource type listener arn=arn:aws:elasticloadbalancing:us-west-2:460538899914:listener/net/a9ac9f1b3019c4d1299e7ededc92b42b/a6f0655da877ddd4/45e05ee69d99bab0

 

Further background is available in this write up:

https://docs.google.com/document/d/1TsTqIVwHDmjuDjG7v06w_5AAbXSisaDX-UfUI9-GVJo/edit#

 

Incident channel:

incident-aws-leaking-tags-for-deleted-resources

 

This is a clone of issue OCPBUGS-5182. The following is the description of the original issue:

Description of problem:

Deploy IPI cluster on azure cloud, set region as westeurope, vm size as EC96iads_v5 or EC96ias_v5. Installation fails with below error:

12-15 11:47:03.429  level=error msg=Error: creating Linux Virtual Machine: (Name "jima-15a-m6fzd-bootstrap" / Resource Group "jima-15a-m6fzd-rg"): compute.VirtualMachinesClient#CreateOrUpdate: Failure sending request: StatusCode=400 -- Original Error: Code="BadRequest" Message="The VM size 'Standard_EC96iads_v5' is not supported for creation of VMs and Virtual Machine Scale Set with '<NULL>' security type."

Similar as https://bugzilla.redhat.com/show_bug.cgi?id=2055247.

From azure portal, we can see that the type of both vm size EC96iads_v5 and EC96ias_v5 are confidential compute.

Might also need to do similar process for them as what did in bug 2055247.

 

Version-Release number of selected component (if applicable):

4.12 nightly build

How reproducible:

Always

Steps to Reproduce:

1. Prepare install-config.yaml file, set region as westeurope, vm size as EC96iads_v5 or EC96ias_v5
2. Deploy IPI azure cluster
3.

Actual results:

Install failed with error in description

Expected results:

Installer should be exited during validation and show expected error message. 

Additional info:

 

 

Description of the problem:

Noticed there were no thread IDs in the assisted-installer logs when debugging 240 node cluster deployment with MCE (slack thread) making it difficult to debug.

How reproducible: 100%

 

Steps to reproduce:

1. Create cluster using assisted service and start the install 

2. Look at the assisted-installer logs 

Actual results:

Logs look like

time="2022-07-14T16:17:31Z" level=info msg="Start complete installation step, with params success: true, error info: " 

Expected results: Thread ID would also print so we can understand which thread it came from


Adding setReportCaller to true will also help

Description of problem:

It is a disconnected cluster on AWS. There is an issue configuring Egress IP where the cluster uses STS. While looking into cloud-network-config-controller pod it is trying to connect to the global sts service "https://sts.amazonaws.com/" rather it should connect to the regional one "https://ec2.ap-southeast-1.amazonaws.com".

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Create a disconected OCP cluster on AWS.
$ oc get netnamespace | grep egress
egress-ip-test                                     2689387    ["172.16.1.24"]
$ oc get hostsubnet
NAME                                              HOST                                              HOST IP        SUBNET          EGRESS CIDRS   EGRESS IPS
ip-172-16-1-151.ap-southeast-1.compute.internal   ip-172-16-1-151.ap-southeast-1.compute.internal   172.16.1.151   10.130.0.0/23                  
ip-172-16-1-53.ap-southeast-1.compute.internal    ip-172-16-1-53.ap-southeast-1.compute.internal    172.16.1.53    10.131.0.0/23                  ["172.16.1.24"]
ip-172-16-2-15.ap-southeast-1.compute.internal    ip-172-16-2-15.ap-southeast-1.compute.internal    172.16.2.15    10.128.0.0/23                  
ip-172-16-2-77.ap-southeast-1.compute.internal    ip-172-16-2-77.ap-southeast-1.compute.internal    172.16.2.77    10.128.2.0/23                  
ip-172-16-3-111.ap-southeast-1.compute.internal   ip-172-16-3-111.ap-southeast-1.compute.internal   172.16.3.111   10.129.0.0/23                  
ip-172-16-3-79.ap-southeast-1.compute.internal    ip-172-16-3-79.ap-southeast-1.compute.internal    172.16.3.79    10.129.2.0/23                  
$ oc logs sdn-controller-6m5kb -n openshift-sdn I0922 04:09:53.348615       1 vnids.go:105] Allocated netid 2689387 for namespace "egress-ip-test"
E0922 04:24:00.682018       1 egressip.go:254] Ignoring invalid HostSubnet ip-172-16-1-53.ap-southeast-1.compute.internal (host: "ip-172-16-1-53.ap-southeast-1.compute.internal", ip: "172.16.1.53", subnet: "10.131.0.0/23"): related node object "ip-172-16-1-53.ap-southeast-1.compute.internal" has an incomplete annotation "cloud.network.openshift.io/egress-ipconfig", CloudEgressIPConfig: <nil>
 $ oc logs cloud-network-config-controller-5c7556db9f-x78bs -n openshift-cloud-network-config-controller

E0922 04:26:59.468726       1 controller.go:165] error syncing 'ip-172-16-2-77.ap-southeast-1.compute.internal': error retrieving the private IP configuration for node: ip-172-16-2-77.ap-southeast-1.compute.internal, err: error: cannot list ec2 instance for node: ip-172-16-2-77.ap-southeast-1.compute.internal, err: WebIdentityErr: failed to retrieve credentials
caused by: RequestError: send request failed
caused by: Post "https://sts.amazonaws.com/": dial tcp 54.239.29.25:443: i/o timeout, requeuing in node workqueue
$ oc get Infrastructure -o yaml
apiVersion: v1
items:
- apiVersion: config.openshift.io/v1
  kind: Infrastructure
  metadata:
    creationTimestamp: "2022-09-22T03:28:15Z"
    generation: 1
    name: cluster
    resourceVersion: "598"
    uid: 994da301-2a96-43b7-b43b-4b7c18d4b716
  spec:
    cloudConfig:
      name: ""
    platformSpec:
      aws:
        serviceEndpoints:
        - name: sts
          url: https://sts.ap-southeast-1.amazonaws.com
        - name: ec2
          url: https://ec2.ap-southeast-1.amazonaws.com
        - name: elasticloadbalancing
          url: https://elasticloadbalancing.ap-southeast-1.amazonaws.com
      type: AWS
  status:
    apiServerInternalURI: https://api-int.openshiftyy.ocpaws.sadiqueonline.com:6443
    apiServerURL: https://api.openshiftyy.ocpaws.sadiqueonline.com:6443
    controlPlaneTopology: HighlyAvailable
    etcdDiscoveryDomain: ""
    infrastructureName: openshiftyy-wfrpf
    infrastructureTopology: HighlyAvailable
    platform: AWS
    platformStatus:
      aws:
        region: ap-southeast-1
        serviceEndpoints:
        - name: ec2
          url: https://ec2.ap-southeast-1.amazonaws.com
        - name: elasticloadbalancing
          url: https://elasticloadbalancing.ap-southeast-1.amazonaws.com
        - name: sts
          url: https://sts.ap-southeast-1.amazonaws.com
      type: AWS
kind: List
metadata:
  resourceVersion: ""