Back to index

4.12.7

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.59

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

Overview 

HyperShift came to life to serve multiple goals, some are main near-term, some are secondary that serve well long-term. 

Main Goals for hosted control planes (HyperShift)

  • Optimize OpenShift for Cost/footprint/ which improves our competitive stance against the *KSes
  • Establish separation of concerns which makes it more resilient for SRE to manage their workload clusters (be it security, configuration management, etc).
  • Simplify and enhance multi-cluster management experience especially since multi-cluster is becoming an industry need nowadays. 

Secondary Goals

HyperShift opens up doors to penetrate the market. HyperShift enables true hybrid (CP and Workers decoupled, mixed IaaS, mixed Arch,...). An architecture that opens up more options to target new opportunities in the cloud space. For more details on this one check: Hosted Control Planes (aka HyperShift) Strategy [Live Document]

 

Hosted Control Planes (HyperShift) Map 

To bring hosted control planes to our customers, we need the means to ship it. Today MCE is how HyperShift shipped, and installed so that customers can use it. There are two main customers for hosted-control-planes: 

 

  • Self-managed: In that case, Red Hat would provide hosted control planes as a service that is managed and SREed by the customer for their tenants (hence “self”-managed). In this management model, our external customers are the direct consumers of the multi-cluster control plane as a servie. Once MCE is installed, they can start to self-service dedicated control planes. 

 

  • Managed: This is OpenShift as a managed service, today we only “manage” the CP, and share the responsibility for other system components, more info here. To reduce management costs incurred by service delivery organizations which translates to operating profit (by reducing variable costs per control-plane), as well as to improve user experience, lower platform overhead (allow customers to focus mostly on writing applications and not concern themselves with infrastructure artifacts), and improve the cluster provisioning experience. HyperShift is shipped via MCE, and delivered to Red Hat managed SREs (same consumption route). However, for managed services, additional tooling needs to be refactored to support the new provisioning path. Furthermore, unlike self-managed where customers are free to bring their own observability stack, Red Hat managed SREs need to observe the managed fleet to ensure compliance with SLOs/SLIs/…

 

If you have noticed, MCE is the delivery mechanism for both management models. The difference between managed and self-managed is the consumer persona. For self-managed, it's the customer SRE for managed its the RH SRE

High-level Requirements

For us to ship HyperShift in the product (as hosted control planes) in either management model, there is a necessary readiness checklist that we need to satisfy. Below are the high-level requirements needed before GA: 

 

  • Hosted control planes fits well with our multi-cluster story (with MCE)
  • Hosted control planes APIs are stable for consumption  
  • Customers are not paying for control planes/infra components.  
  • Hosted control planes has an HA and a DR story
  • Hosted control planes is in parity with top-level add-on operators 
  • Hosted control planes reports metrics on usage/adoption
  • Hosted control planes is observable  
  • HyperShift as a backend to managed services is fully unblocked.

 

Please also have a look at our What are we missing in Core HyperShift for GA Readiness? doc. 

Hosted control planes fits well with our multi-cluster story

Multi-cluster is becoming an industry need today not because this is where trend is going but because it’s the only viable path today to solve for many of our customer’s use-cases. Below is some reasoning why multi-cluster is a NEED:

 

 

As a result, multi-cluster management is a defining category in the market where Red Hat plays a key role. Today Red Hat solves for multi-cluster via RHACM and MCE. The goal is to simplify fleet management complexity by providing a single pane of glass to observe, secure, police, govern, configure a fleet. I.e., the operand is no longer one cluster but a set, a fleet of clusters. 

HyperShift logically centralized architecture, as well as native separation of concerns and superior cluster lifecyle management experience, makes it a great fit as the foundation of our multi-cluster management story. 

Thus the following stories are important for HyperShift: 

  • When lifecycling OpenShift clusters (for any OpenShift form factor) on any of the supported providers from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to use a consistent UI so I can manage and operate (observe, govern,...) a fleet of clusters.
  • I want to specify HA constraints (e.g., deploy my clusters in different regions) while ensuring acceptable QoS (e.g., latency boundaries) to ensure/reduce any potential downtime for my workloads. 
  • When operating OpenShift clusters (for any OpenShift form factor) on any of the supported provider from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to backup any critical data so I am able to restore them in case of hosting service cluster (management cluster) failure. 

Refs:

Hosted control planes APIs are stable for consumption.

 

HyperShift is the core engine that will be used to provide hosted control-planes for consumption in managed and self-managed. 

 

Main user story:  When life cycling clusters as a cluster service consumer via HyperShift core APIs, I want to use a stable/backward compatible API that is less susceptible to future changes so I can provide availability guarantees. 

 

Ref: What are we missing in Core HyperShift for GA Readiness?

Customers are not paying for control planes/infra components. 

 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumptions

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

HyperShift - proposed cuts from data plane

HyperShift has an HA and a DR story

When operating OpenShift clusters (for any OpenShift form factor) from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin) I want to be able to migrate CPs from one hosting service cluster to another:

  • as means for disaster recovery in the case of total failure
  • so that scaling pressures on a management cluster can be mitigated or a management cluster can be decommissioned.

More information: 

 

Hosted control planes reports metrics on usage/adoption

To understand usage patterns and inform our decision making for the product. We need to be able to measure adoption and assess usage.

See Hosted Control Planes (aka HyperShift) Strategy [Live Document]

Hosted control plane is observable  

Whether it's managed or self-managed, it’s pertinent to report health metrics to be able to create meaningful Service Level Objectives (SLOs), alert of failure to meet our availability guarantees. This is especially important for our managed services path. 

HyperShift is in parity with top-level add-on operators

https://issues.redhat.com/browse/OCPPLAN-8901 

Unblock HyperShift as a backend to managed services

HyperShift for managed services is a strategic company goal as it improves usability, feature, and cost competitiveness against other managed solutions, and because managed services/consumption-based cloud services is where we see the market growing (customers are looking to delegate platform overhead). 

 

We should make sure our SD milestones are unblocked by the core team. 

 

Note 

This feature reflects HyperShift core readiness to be consumed. When all related EPICs and stories in this EPIC are complete HyperShift can be considered ready to be consumed in GA form. This does not describe a date but rather the readiness of core HyperShift to be consumed in GA form NOT the GA itself.

- GA date for self-managed will be factoring in other inputs such as adoption, customer interest/commitment, and other factors. 
- GA dates for ROSA-HyperShift are on track, tracked in milestones M1-7 (have a look at https://issues.redhat.com/browse/OCPPLAN-5771

Epic Goal*

The goal is to split client certificate trust chains from the global Hypershift root CA.

 
Why is this important? (mandatory)

This is important to:

  • assure a workload can be run on any kind of OCP flavor
  • reduce the blast radius in case of a sensitive material leak
  • separate trust to allow more granular control over client certificate authentication

 
Scenarios (mandatory) 

Provide details for user scenarios including actions to be performed, platform specifications, and user personas.  

  1. I would like to be able to run my workloads on any OpenShift-like platform.
    My workloads allow components to authenticate using client certificates based
    on a trust bundle that I am able to retrieve from the cluster.
  1. I don't want my users to have access to any CA bundle that would allow them
    to trust a random certificate from the cluster for client certificate authentication.

 
Dependencies (internal and external) (mandatory)

Hypershift team needs to provide us with code reviews and merge the changes we are to deliver

Contributing Teams(and contacts) (mandatory) 

  • Development - OpenShift Auth, Hypershift
  • Documentation -OpenShift Auth Docs team
  • QE - OpenShift Auth QE
  • PX - I have no idea what PX is
  • Others - others

Acceptance Criteria (optional)

The serviceaccount CA bundle automatically injected to all pods cannot be used to authenticate any client certificate generated by the control-plane.

Drawbacks or Risk (optional)

Risk: there is a throbbing time pressure as this should be delivered before first stable Hypershift release

Done - Checklist (mandatory)

  • CI Testing -  Basic e2e automationTests are merged and completing successfully
  • Documentation - Content development is complete.
  • QE - Test scenarios are written and executed successfully.
  • Technical Enablement - Slides are complete (if requested by PLM)
  • Engineering Stories Merged
  • All associated work items with the Epic are closed
  • Epic status should be “Release Pending” 

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

Description of problem:
OpenShift installer hits error when missing a topology section inside of a failureDomain like this in install-config.yaml:

    - name: us-east-1
      region: us-east
      zone: us-east-1a
    - name: us-east-2
      region: us-east
      zone: us-east-2a
      topology:
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-2
        networks:
        - ci-segment-154
        datastore: workload_share_vcsmdcncworkload2_vyC6a

Version-Release number of selected component (if applicable):

Build from latest master (4.12)

How reproducible:

Each time

Steps to Reproduce:

1. Create install-config.yaml for vsphere multi-zone
2. Leave out a topology section (under failureDomains)
3. Attempt to create cluster

Actual results:

FATAL failed to fetch Terraform Variables: failed to fetch dependency of "Terraform Variables": failed to generate asset "Platform Provisioning Check": platform.vsphere.failureDomains.topology.resourcePool: Invalid value: "//Resources": resource pool '//Resources' not found 

Expected results:

Validation of topology before attempting to create any resources

Description of problem:

We need to include the `openshift_apps_deploymentconfigs_strategy_total` metrics to the IO archive file.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Create a cluster
2. Download the IO archive
3. Check the file `config/metrics`
4. You must find `openshift_apps_deploymentconfigs_strategy_total` insde of it

Actual results:

 

Expected results:

You should see the `openshift_apps_deploymentconfigs_strategy_total` at the `config/metrics` file.

Additional info:

 

In order to support 4.12 there needs to be an entry for OS_IMAGES in images.env.template.

 

Note that the actual url isn't important, just that there is an entry for 4.12.

This ticket is linked with

https://issues.redhat.com/browse/SDA-8177
https://issues.redhat.com/browse/SDA-8178

As a summary, a base domain for a hosted cluster may already contain the "cluster-name".

But it seems that Hypershift also encodes it during some reconciliation step:

https://github.com/openshift/hypershift/blob/main/support/globalconfig/dns.go#L20

Then when using a DNS base domain like:

"rosa.lponce-prod-01.qtii.p3.openshiftapps.com"

we will have A records like:

"*.apps.lponce-prod-01.rosa.lponce-prod-01.qtii.p3.openshiftapps.com"

The expected behaviour would be that given a DNS base domain:

"rosa.lponce-prod-01.qtii.p3.openshiftapps.com"

The resulting wildcard for Ingress would be:

"*.apps.rosa.lponce-prod-01.qtii.p3.openshiftapps.com"

Note that trying to configure a specific IngressSpec for a hosted cluster didn't work for our case, as the wildcards records are not created.

This is a clone of issue OCPBUGS-1604. The following is the description of the original issue:

Description of problem:

When viewing a resource that exists for multiple clusters, the data may be from the wrong cluster for a short time after switching clusters using the multicluster switcher.

Version-Release number of selected component (if applicable):

4.10.6

How reproducible:

Always

Steps to Reproduce:

1. Install RHACM 2.5 on OCP 4.10 and enable the FeatureGate to get multicluster switching
2. From the local-cluster perspective, view a resource that would exist on all clusters, like /k8s/cluster/config.openshift.io~v1~Infrastructure/cluster/yaml
3. Switch to a different cluster in the cluster switcher 

Actual results:

Content for resource may start out correct, but then switch back to the local-cluster version before switching to the correct cluster several moments later.

Expected results:

Content should always be shown from the selected cluster.

Additional info:

Migrated from bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=2075657

This is a clone of issue OCPBUGS-6213. The following is the description of the original issue:

Please review the following PR: https://github.com/openshift/machine-config-operator/pull/3450

The PR has been automatically opened by ART (#aos-art) team automation and indicates
that the image(s) being used downstream for production builds are not consistent
with the images referenced in this component's github repository.

Differences in upstream and downstream builds impact the fidelity of your CI signal.

If you disagree with the content of this PR, please contact @release-artists
in #aos-art to discuss the discrepancy.

Closing this issue without addressing the difference will cause the issue to
be reopened automatically.

Copied from an upstream issue: https://github.com/operator-framework/operator-lifecycle-manager/issues/2830

What did you do?

When attempting to reinstall an operator that uses conversion webhooks by

  • Deleting the operator subscription and any CSVs associated with it
  • Recreating the operator subscription

The resulting InstallPlan enters a failed state with message similar to

error validating existing CRs against new CRD's schema for "devworkspaces.workspace.devfile.io": error listing resources in GroupVersionResource schema.GroupVersionResource{Group:"workspace.devfile.io", Version:"v1alpha1", Resource:"devworkspaces"}: conversion webhook for workspace.devfile.io/v1alpha2, Kind=DevWorkspace failed: Post "https://devworkspace-controller-manager-service.test-namespace.svc:443/convert?timeout=30s": service "devworkspace-controller-manager-service" not found

When the original CSVs are deleted, the operator's main deployment and service are removed, but CRDs are left in-cluster. However, since the service/CA bundle/deployment that serve the conversion webhook are removed, conversion webhooks are broken at that point. Eventually this impacts garbage collection on the cluster as well.

This can be reproduced by installing the DevWorkspace Operator from the Red Hat catalog. (I can provide yamls/upstream images that reproduce as well, if that's helpful). It may be necessary to create a DevWorkspace in the cluster before deletion, e.g. by oc apply -f https://raw.githubusercontent.com/devfile/devworkspace-operator/main/samples/plain.yaml

What did you expect to see?
Operator is able to be reinstalled without removing CRDs and all instances.

What did you see instead? Under which circumstances?
It's necessary to completely remove the operator including CRDs. For our operator (DevWorkspace), this also makes uninstall especially complicated as finalizers are used (so CRDs cannot be deleted if the controller is removed, and the controller cannot be restored by reinstalling)

Environment

operator-lifecycle-manager version: 4.10.24

Kubernetes version information: Kubernetes Version: v1.23.5+012e945 (OpenShift 4.10.24)

Kubernetes cluster kind: OpenShift

Description of problem:

On the alert details page and alerting rule details page, clicking on a field that has a popover help throws an uncaught JavaScript error.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Go to Observe > Alerting pages
2. Click on an alert (or go to the rules tab then click on a rule)
3. Click on one of the underlined fields (those that have a popover help)

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-3405. The following is the description of the original issue:

In case it should be used for publishing artifacts in CI jobs.

Look into to see if the following things are leaked:

  • pull secret
  • ssh key
  • potentially values in journal logs

This is a clone of issue OCPBUGS-3524. The following is the description of the original issue:

Description of problem:

Install fully private cluster on Azure against 4.12.0-0.nightly-2022-11-10-033725, sa for coreOS image have public access.

$ az storage account list -g jima-azure-11a-f58lp-rg --query "[].[name,allowBlobPublicAccess]" -o tsv
clusterptkpx    True
imageregistryjimaazrsgcc    False

same profile on 4.11.0-0.nightly-2022-11-10-202051, sa for coreos image are not publicly accessible.

$ az storage account list -g jima-azure-11c-kf9hw-rg --query "[].[name,allowBlobPublicAccess]" -o tsv
clusterr8wv9    False
imageregistryjimaaz9btdx    False 

Checked that terraform-provider-azurerm version is different between 4.11 and 4.12.

4.11: v2.98.0

4.12: v3.19.1

In terraform-provider-azurerm v2.98.0, it use property allow_blob_public_access to manage sa public access, the default value is false.

In  terraform-provider-azurerm v3.19.1, property allow_blob_public_access is renamed to allow_nested_items_to_be_public , the default value is true. 

https://github.com/hashicorp/terraform-provider-azurerm/blob/main/CHANGELOG.md#300-march-24-2022

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-11-10-033725

How reproducible:

always on 4.12

Steps to Reproduce:

1. Install fully private cluster on azure against 4.12 payload
2. 
3.

Actual results:

sa for coreos image is publicly accessible

Expected results:

sa for coreos image should not be publicly accessible

Additional info:

only happened on 4.12

 

 

Tracker bug for bootimage bump in 4.12. This bug should block bugs which need a bootimage bump to fix.

This is a clone of issue OCPBUGS-6799. The following is the description of the original issue:

Description of problem:
The pipelines -> repositories list view in Dev Console does not show the running pipelineline as the last pipelinerun in the table.

Original BugZilla Link: https://bugzilla.redhat.com/show_bug.cgi?id=2016006
OCPBUGSM: https://issues.redhat.com/browse/OCPBUGSM-36408

Description of problem:

Image registry pods panic while deploying OCP in ap-south-2 AWS region

Version-Release number of selected component (if applicable):

4.11.2

How reproducible:

Deploy OCP in AWS ap-south-2 region

Steps to Reproduce:

Deploy OCP in AWS ap-south-2 region 

Actual results:

panic: Invalid region provided: ap-south-2

Expected results:

Image registry pods should come up with no errors

Additional info:

 

 

 

 

 

Description of problem:

seeing test failure due to panic in cvo here:

Undiagnosed panic detected in pod expand_less
              0s

                {  pods/openshift-cluster-version_cluster-version-operator-96cf55b5-rffgt_cluster-version-operator_previous.log.gz:E0915 18:38:42.763315       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
pods/openshift-cluster-version_cluster-version-operator-96cf55b5-rffgt_cluster-version-operator_previous.log.gz:E0915 18:38:42.763418       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)}

full error from logs:

/E0915 18:38:42.763315       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
goroutine 187 [running]:
k8s.io/apimachinery/pkg/util/runtime.logPanic({0x1934980?, 0x2bc6240})
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:75 +0x99
k8s.io/apimachinery/pkg/util/runtime.HandleCrash({0x0, 0x0, 0x4d2604?})
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:49 +0x75
panic({0x1934980, 0x2bc6240})
	/usr/lib/golang/src/runtime/panic.go:838 +0x207
github.com/openshift/cluster-version-operator/pkg/cvo.(*SyncWorker).calculateNext(0xc0015c6000, 0xc001df2000)
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/sync_worker.go:716 +0x14d
github.com/openshift/cluster-version-operator/pkg/cvo.(*SyncWorker).Start.func1()
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/sync_worker.go:575 +0x2a9
k8s.io/apimachinery/pkg/util/wait.BackoffUntil.func1(0x10000000000?)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:155 +0x3e
k8s.io/apimachinery/pkg/util/wait.BackoffUntil(0xc001df2000?, {0x1e44e60, 0xc002739f50}, 0x1, 0xc00058e0c0)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:156 +0xb6
k8s.io/apimachinery/pkg/util/wait.JitterUntil(0x0?, 0x989680, 0x0, 0x60?, 0x0?)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:133 +0x89
k8s.io/apimachinery/pkg/util/wait.Until(...)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:90
github.com/openshift/cluster-version-operator/pkg/cvo.(*SyncWorker).Start(0xc0015c6000?, {0x1e5eb30?, 0xc0000cacc0?}, 0x10?, {0x0?, 0x0?}, {0x0?, 0x0?})
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/sync_worker.go:556 +0x145
github.com/openshift/cluster-version-operator/pkg/cvo.(*Operator).Run.func2()
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/cvo.go:387 +0x83
created by github.com/openshift/cluster-version-operator/pkg/cvo.(*Operator).Run
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/cvo.go:385 +0x4af
E0915 18:38:42.763418       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference) 

 

Version-Release number of selected component (if applicable):

 

How reproducible:

currently unsure hit this in a test run, but shouldn't ever panic.

Steps to Reproduce:

1.
2.
3.

Actual results:

panic in cvo pod

Expected results:

no panic in cvo pod

Additional info:

 

Description of problem:

TestUnmanagedDNSToManagedDNSInternalIngressController E2E test is failing on the error:
{
unmanaged_dns_test.go:272: failed to verify connectivity with workload with reqURL http://10.0.128.7 using external client: timed out waiting for the condition  

How reproducible:

About 75% of the time.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

75%

Steps to Reproduce:

1. Run CI E2E tests on cluster-ingress-operator or 
make test-e2e TEST=TestUnmanagedDNSToManagedDNSInternalIngressController 

Actual results:

E2E test fails about 75% of the time

Expected results:

E2E should always pass

Additional info:

 

Description of problem:

Seeing intermittently during cluster installs

Network operator stuck in Progressing with 

network                       4.12.0-0.nightly-2022-10-25-210451   True        True          False      117m    DaemonSet "/openshift-network-diagnostics/network-check-target" is not available (awaiting 1 nodes)


MG: http://shell.lab.bos.redhat.com/~anusaxen/must-gather.local.5450303633101217331/

iptables-save on master-2 node - http://shell.lab.bos.redhat.com/~anusaxen/iptables-save


pod events
Events:
  Type     Reason                  Age                   From               Message
  ----     ------                  ----                  ----               -------
  Normal   Scheduled               129m                  default-scheduler  Successfully assigned openshift-network-diagnostics/network-check-target-gnld6 to qe-anurag114e-9xkz4-master-2.c.openshift-qe.internal
  Warning  FailedMount             128m (x7 over 129m)   kubelet            MountVolume.SetUp failed for volume "kube-api-access-kfg5s" : [object "openshift-network-diagnostics"/"kube-root-ca.crt" not registered, object "openshift-network-diagnostics"/"openshift-service-ca.crt" not registered]
  Warning  NetworkNotReady         128m (x18 over 129m)  kubelet            network is not ready: container runtime network not ready: NetworkReady=false reason:NetworkPluginNotReady message:Network plugin returns error: No CNI configuration file in /etc/kubernetes/cni/net.d/. Has your network provider started?
  Warning  ErrorAddingLogicalPort  127m (x2 over 127m)   controlplane       addLogicalPort failed for openshift-network-diagnostics/network-check-target-gnld6: unable to parse node L3 gw annotation: k8s.ovn.org/l3-gateway-config annotation not found for node "qe-anurag114e-9xkz4-master-2.c.openshift-qe.internal"
  Normal   AddedInterface          127m                  multus             Add eth0 [10.130.0.3/23] from ovn-kubernetes
  Warning  ProbeError              9m (x16 over 71m)     kubelet            Readiness probe error: Get "http://10.130.0.3:8080/": dial tcp 10.130.0.3:8080: i/o timeout (Client.Timeout exceeded while awaiting headers)
body:
  Warning  ProbeError  4m (x717 over 126m)  kubelet  Readiness probe error: Get "http://10.130.0.3:8080/": context deadline exceeded (Client.Timeout exceeded while awaiting headers)
body:




Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-25-210451

How reproducible:

rare

Steps to Reproduce:

1.Install OCP with OVNKubernetes with HO enabled

defaultNetwork:
    type: OVNKubernetes
    ovnKubernetesConfig:
      hybridOverlayConfig:
        hybridClusterNetwork: []

2.
3.

Actual results:

Installation stuck due to network-check-target issue 

Expected results:

Installation should succeed

Additional info:

Will add additional logs

 

 

 

 

Assisted installations default to setting platform: baremetal. Using the ReST API, it is possible to select vsphere (or ovirt) as the platform type. In every case, the actual platform data is filled in by assisted-service, and cannot be specified by the user.

The ClusterDeployment resource (from Hive) contains a Platform field. We could look for a platform specified in this field and set that platform when creating the cluster in the create-cluster-and-infraenv service. If ZTP were ever to support other deployment methods, this would probably be a good choice for that also.

We should probably warn the user if they attempt to put any data inside the platform settings, as this will be ignored. This shouldn't be an error, though, as it would prevent users from using existing install configs. Perhaps it should be an error if they specify a platform we don't support.

 

Note: https://issues.redhat.com/browse/AGENT-284?focusedCommentId=21019997&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-21019997 

[Pawan]: We can simply use the PlatformType from ACI and then no assisted service client changes are required. We will throw an error if the user provides an unsupported platformType ( aws, gcp, etc)

 

Ignoring the unwanted Platform settings from install-config.yaml to be handled in https://issues.redhat.com/browse/AGENT-348

Description of problem:

When providing the openshift-install agent create command with installconfig + agentconfig manifests that contain the InstallConfig Proxy section, the Proxy configuration does not get applied.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1.Define InstallConfig with Proxy section
2.openshift-install agent create image
3.Boot ISO
4.Check /etc/assisted/manifests for InfraEnv to contain its Proxy section

Actual results:

Missing proxy

Expected results:

Proxy present and matching InstallConfig's

Additional info:

 

In 4.12.0-rc.0 some API-server components declare flowcontrol/v1beta1 release manifests:

$ oc adm release extract --to manifests quay.io/openshift-release-dev/ocp-release:4.12.0-rc.0-x86_64
$ grep -r flowcontrol.apiserver.k8s.io manifests
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_etcd-operator_10_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_kube-apiserver-operator_08_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_kube-apiserver-operator_08_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_kube-apiserver-operator_08_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-apiserver-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-apiserver-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-apiserver-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-controller-manager-operator_10_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1

The APIs are scheduled for removal in Kube 1.26, which will ship with OpenShift 4.13. We want the 4.12 CVO to move to modern APIs in 4.12, so the APIRemovedInNext.*ReleaseInUse alerts are not firing on 4.12. This ticket tracks removing those manifests, or replacing them with a more modern resource type, or some such. Definition of done is that new 4.13 (and with backports, 4.12) nightlies no longer include flowcontrol.apiserver.k8s.io/v1beta1 manifests.

This can be noticed in https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/pr-logs/pull/27560/pull-ci-openshift-origin-master-e2e-gcp-ovn/1593697975584952320/artifacts/e2e-gcp-ovn/openshift-e2e-test/build-log.txt:

[It] clients should not use APIs that are removed in upcoming releases [apigroup:config.openshift.io] [Suite:openshift/conformance/parallel]
  github.com/openshift/origin/test/extended/apiserver/api_requests.go:27
Nov 18 21:59:06.261: INFO: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
Nov 18 21:59:06.261: INFO: api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
Nov 18 21:59:06.261: INFO: api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
Nov 18 21:59:06.261: INFO: user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
Nov 18 21:59:06.261: INFO: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
Nov 18 21:59:06.261: INFO: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
[AfterEach] [sig-arch][Late]
  github.com/openshift/origin/test/extended/util/client.go:158
[AfterEach] [sig-arch][Late]
  github.com/openshift/origin/test/extended/util/client.go:159
flake: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
Ginkgo exit error 4: exit with code 4

This is required to unblock https://github.com/openshift/origin/pull/27561

This is a clone of issue OCPBUGS-4724. The following is the description of the original issue:

Description of problem: Installing OCP4.12 on top of Openstack 16.1 following the multi-availabilityZone installation is creating a cluster where the egressIP annotations ("cloud.network.openshift.io/egress-ipconfig") are created with empty value for the workers:

$ oc get nodes
NAME                          STATUS   ROLES                  AGE   VERSION
ostest-kncvv-master-0         Ready    control-plane,master   9h    v1.25.4+86bd4ff
ostest-kncvv-master-1         Ready    control-plane,master   9h    v1.25.4+86bd4ff
ostest-kncvv-master-2         Ready    control-plane,master   9h    v1.25.4+86bd4ff
ostest-kncvv-worker-0-qxr5g   Ready    worker                 8h    v1.25.4+86bd4ff
ostest-kncvv-worker-1-bmvvv   Ready    worker                 8h    v1.25.4+86bd4ff
ostest-kncvv-worker-2-pbgww   Ready    worker                 8h    v1.25.4+86bd4ff
$ oc get node ostest-kncvv-worker-0-qxr5g -o json | jq -r '.metadata.annotations' 
{
  "alpha.kubernetes.io/provided-node-ip": "10.196.2.156",
  "cloud.network.openshift.io/egress-ipconfig": "null",
  "csi.volume.kubernetes.io/nodeid": "{\"cinder.csi.openstack.org\":\"8327aef0-c6a7-4bf6-8f8f-d25c9abd9bce\",\"manila.csi.openstack.org\":\"ostest-kncvv-worker-0-qxr5g\"}",
  "k8s.ovn.org/host-addresses": "[\"10.196.2.156\",\"172.17.5.154\"]",
  "k8s.ovn.org/l3-gateway-config": "{\"default\":{\"mode\":\"shared\",\"interface-id\":\"br-ex_ostest-kncvv-worker-0-qxr5g\",\"mac-address\":\"fa:16:3e:7e:b5:70\",\"ip-addresses\":[\"10.196.2.156/16\"],\"ip-address\":\"10.196.2.156/16\",\"next-hops\":[\"10.196.0.1\"],\"next-hop\":\"10.196.0.1\",\"node-port-enable\":\"true\",\"vlan-id\":\"0\"}}",
  "k8s.ovn.org/node-chassis-id": "fd777b73-aa64-4fa5-b0b1-70c3bebc2ac6",
  "k8s.ovn.org/node-gateway-router-lrp-ifaddr": "{\"ipv4\":\"100.64.0.6/16\"}",
  "k8s.ovn.org/node-mgmt-port-mac-address": "42:e8:4f:42:9f:7d",
  "k8s.ovn.org/node-primary-ifaddr": "{\"ipv4\":\"10.196.2.156/16\"}",
  "k8s.ovn.org/node-subnets": "{\"default\":\"10.128.2.0/23\"}",
  "machine.openshift.io/machine": "openshift-machine-api/ostest-kncvv-worker-0-qxr5g",
  "machineconfiguration.openshift.io/controlPlaneTopology": "HighlyAvailable",
  "machineconfiguration.openshift.io/currentConfig": "rendered-worker-31323caf2b510e5b81179bb8ec9c150f",
  "machineconfiguration.openshift.io/desiredConfig": "rendered-worker-31323caf2b510e5b81179bb8ec9c150f",
  "machineconfiguration.openshift.io/desiredDrain": "uncordon-rendered-worker-31323caf2b510e5b81179bb8ec9c150f",
  "machineconfiguration.openshift.io/lastAppliedDrain": "uncordon-rendered-worker-31323caf2b510e5b81179bb8ec9c150f",
  "machineconfiguration.openshift.io/reason": "",
  "machineconfiguration.openshift.io/state": "Done",
  "volumes.kubernetes.io/controller-managed-attach-detach": "true"
}

Furthermore, Below is observed on openshift-cloud-network-config-controller:

$ oc logs -n openshift-cloud-network-config-controller          cloud-network-config-controller-5fcdb6fcff-6sddj | grep egress
I1212 00:34:14.498298       1 node_controller.go:146] Setting annotation: 'cloud.network.openshift.io/egress-ipconfig: null' on node: ostest-kncvv-worker-2-pbgww
I1212 00:34:15.777129       1 node_controller.go:146] Setting annotation: 'cloud.network.openshift.io/egress-ipconfig: null' on node: ostest-kncvv-worker-0-qxr5g
I1212 00:38:13.115115       1 node_controller.go:146] Setting annotation: 'cloud.network.openshift.io/egress-ipconfig: null' on node: ostest-kncvv-worker-1-bmvvv
I1212 01:58:54.414916       1 node_controller.go:146] Setting annotation: 'cloud.network.openshift.io/egress-ipconfig: null' on node: ostest-kncvv-worker-0-drd5l
I1212 02:01:03.312655       1 node_controller.go:146] Setting annotation: 'cloud.network.openshift.io/egress-ipconfig: null' on node: ostest-kncvv-worker-1-h976w
I1212 02:04:11.656408       1 node_controller.go:146] Setting annotation: 'cloud.network.openshift.io/egress-ipconfig: null' on node: ostest-kncvv-worker-2-zxwrv

Version-Release number of selected component (if applicable):

RHOS-16.1-RHEL-8-20221206.n.1
4.12.0-0.nightly-2022-12-09-063749

How reproducible:

Always

Steps to Reproduce:

1. Run AZ job on D/S CI (Openshift on Openstack QE CI)
2. Run conformance/serial tests

Actual results:

conformance/serial TCs are failing because it is not finding the egressIP annotation on the workers

Expected results:

Tests passing

Additional info:

Links provided on private comment.

Tracker issue for bootimage bump in 4.12. This issue should block issues which need a bootimage bump to fix.

The previous bump was OCPBUGS-1941.

This is a clone of issue OCPBUGS-4950. The following is the description of the original issue:

Description of problem:

A PR bumping OLM's k8s dependencies to 1.25 wasn't merged into openshift 4.12

Version-Release number of selected component (if applicable):

openshift-4.12

How reproducible:

Always

Steps to Reproduce:

1. Check OLM's repository for k8s dependencies in the 4.12 branch

Actual results:

Has 1.24 k8s dependencies

Expected results:

Has 1.25 k8s dependencies

Additional info:

 

 

Description of problem:

KafkSink current desctiption in odc is `Kafka Sink is Addressable, it receives events and send them to a Kafka topic.` and this should be `A KafkaSink takes a CloudEvent, and sends it to an Apache Kafka Topic.  Events can be specified in either Structured or Binary mode.` as provided by Serverless team

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Install Serverless operator
2. Create CR for knativeKafka in knative-eventing ns
3. go to dev perspective -> add -> event sink
4. Check the description of kafka sink

Actual results:

 

Expected results:

Update the description to as provided by serverless team

Additional info:

 

https://github.com/openshift/origin/pull/27444 was intended to move the scaling test out of serial to it's own test suite, but it added it to parallel – meaning it's running in all our normal upgrade jobs, causing them to frequently fail with repeating pathological events as well as greatly increasing their run time.

See https://github.com/openshift/origin/pull/27444#discussion_r991296925 for more info

This is a clone of issue OCPBUGS-186. The following is the description of the original issue:

Description of problem:
When resizing the browser window, the PipelineRun task status bar would overlap the status text that says "Succeeded" in the screenshot.

Actual results:
Status text is overlapped by the task status bar

Expected results:
Status text breaks to a newline or gets shortened by "..."

Manoj noticed that the cluster registration fails for SNO clusters when the network type is set to OpenShiftSDN. We should add some validation to prevent this combination.

Failed to register cluster with assisted-service: AssistedServiceError Code: 400 Href: ID: 400 Kind: Error Reason: OpenShiftSDN network type is not allowed in single node mode

Documentation also indicates OpenShiftSDN is not compatible: https://docs.openshift.com/container-platform/4.11/installing/installing_sno/install-sno-preparing-to-install-sno.html

This is a clone of issue OCPBUGS-5988. The following is the description of the original issue:

Description of problem:

Etcd operator is in degraded state as one of the masters can't connect.
Master that fails to connect was previously bootstrap and pivoted as part of assisted-installer installation to master.

Etcd log:
2023-01-17T23:09:26.523562312Z 28dcf1b0a44481b0, started, test-infra-cluster-04bf4418-master-1, https://192.168.127.11:2380, https://192.168.127.11:2379, false
2023-01-17T23:09:26.523562312Z 30600b5b86e23c8e, started, etcd-bootstrap, https://192.168.127.12:2380, https://192.168.127.12:2379, false
2023-01-17T23:09:26.523562312Z 73f00626fee34a87, started, test-infra-cluster-04bf4418-master-0, https://192.168.127.10:2380, https://192.168.127.10:2379, false
2023-01-17T23:09:26.541214220Z #### attempt 0
2023-01-17T23:09:26.547811132Z       member={name="test-infra-cluster-04bf4418-master-1", peerURLs=[https://192.168.127.11:2380}, clientURLs=[https://192.168.127.11:2379]
2023-01-17T23:09:26.547811132Z       member={name="etcd-bootstrap", peerURLs=[https://192.168.127.12:2380}, clientURLs=[https://192.168.127.12:2379]
2023-01-17T23:09:26.547811132Z       member={name="test-infra-cluster-04bf4418-master-0", peerURLs=[https://192.168.127.10:2380}, clientURLs=[https://192.168.127.10:2379]
2023-01-17T23:09:26.547811132Z       target={name="etcd-bootstrap", peerURLs=[https://192.168.127.12:2380}, clientURLs=[https://192.168.127.12:2379]
2023-01-17T23:09:26.547846508Z member "https://192.168.127.12:2380" dataDir has been destroyed and must be removed from the cluster

There are couple of problems that we see:
1. For unknown reason etcd operator BootstrapTeardownController fails to start as it fails to see "openshift-etcd" namespace though by the logs it is there.
2023-01-17T21:39:43.323928903Z E0117 21:39:43.323917       1 base_controller.go:272] BootstrapTeardownController reconciliation failed: failed to get bootstrap scaling strategy: failed to get openshift-etcd names

2. DelayStrategy code was change by https://github.com/openshift/cluster-etcd-operator/pull/964/files and currently it requires 3 healthy members in order to remove. It can create issues as etcd and cluster-bootstrap(bootkube) are not synchronized and nothing is actually blocking bootstrap on stop etcd and block remove of bootstrap etcd.(at least how i understand the flow)


Version-Release number of selected component (if applicable):

 

How reproducible:

It is race as far as i understand but reproduced pretty much in our CI by installing 4.12 nightlies

Steps to Reproduce:

1.
2.
3.

Actual results:

Etcd is degrade cause third joined master etcd can't start

Expected results:

Etcd is healthy

Additional info:

 

User Story

As an OpenShift operator, i would like to be able to add labels to my MachineSets and nodes which contain unique values, while also using the cluster autoscaler's ability to balance similar node groups. Being able to specify additional labels through the ClusterAutoscaler CRD would allow me to do that.

Background

Something that has arisen during the investigation of https://bugzilla.redhat.com/show_bug.cgi?id=2001027 is the notion that each CSI driver could create its own zone topology labels, and that they do not have to be consistent with the well known kubernetes label.

It is possible, although not entirely confirmed, that a CSI driver might add these labels even when not in use (although running in the cluster).

Additionally, users may need the option to specify more labels to ignore (as illustrated in the discussion of the bug).

Steps

  • Add a new API field for the labels to ignore
  • it should be a list
  • write some unit tests
  • update our balance node e2e test

Stakeholders

  • cloud team, qe

Definition of Done

  • field and functionality added
  • Docs
  • product docs will need an update
  • Testing
  • unit and e2e

Description of problem:

AWS tagging - when applying user defined tags you cannot add more than 10

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Configure userTags for aws platform with more than 8 tags.
2. Installer fails to add the tags while AWS supports upto 50 tags.

Actual results:

Installer validation fails.

Expected results:

Installer should be able to add more than 8 tags.

Additional info:

 

Description of problem:

health_statuses_insights metrics is showing disabled rules in "total". In other fields, it shows the correct amount.
In the code linked below, we can see that the "Disabled" rules are only skipped during the value assigning of TotalRisk

https://github.com/openshift/insights-operator/blob/master/pkg/insights/insightsreport/insightsreport.go#L268

How reproducible:

Always

Steps to Reproduce:

1. Upload a fake archive to trigger health checks (for example with rule CVE_2020_8555_kubernetes)
2. Disable one of the rules through https://console.redhat.com/api/insights-results-aggregator/v1/clusters/{cluster.id}/rules/{rule}/error_key/{error_key}/disable
3. Create support secret and set endpoint="https://httpstat.us/200"
4. restart insights operator
5. wait for alerts to trigger
6. Check health_statuses_insights metrics. 

rule:

ccx_rules_ocp.external.rules.ocp_version_end_of_life.report

error_key:

OCP4X_BEYOND_EOL

 

Actual results:

"moderate" health_statuses_insights shows 2 triggers
"total" shows 3. Therefore, it is accounting for the deactivated rule.

Expected results:

"moderate" health_statuses_insights shows 2 triggers
"total" health_statuses_insights shows 2 triggers (doesn't account for deactivated rule)

Additional info:

If there is any issue in triggering this events, you may contact me and I can help with the steps.

 

Description of problem:

Installation fails on AWS because the installer manifests include an invalid ingresses.config.openshift.io/cluster manifest.

Version-Release number of selected component (if applicable):

4.12.

How reproducible:

Seems to be a consistent failure.

Steps to Reproduce:

1. Install a cluster on AWS without specifying lbType in the install-config.

Actual results:

The cluster bootstrap fails with the following error message:

"cluster-ingress-02-config.yml": failed to create ingresses.v1.config.openshift.io/cluster -n : Ingress.config.openshift.io "cluster" is invalid: spec.loadBalancer.platform.aws.type: Required value
 

Expected results:

Cluster bootstrap should succeed.

Additional info:

https://github.com/openshift/installer/pull/6478 introduced the problematic logic that sets spec.loadBalancer.platform.aws without setting spec.loadBalancer.platform.aws.type.

 

Description of problem:

For Hardware Backed Management Ports (e.g. Virtual functions), the Egress IP Health Check Feature will error out with:
"unable to start health checking server: no mgmt ip"

Version-Release number of selected component (if applicable):

OVN-Kubernetes 4.12.0

How reproducible:

Always

Steps to Reproduce:

1. Load OVN-Kubernetes 4.12.0 in MLX BlueField 2
2. If in NIC mode:
https://github.com/ovn-org/ovn-kubernetes/pull/3160
https://github.com/ovn-org/ovn-kubernetes/pull/3251
Patches are needed.
3. If in DPU mode then those above patches are optional.
4. Set OVNKUBE_NODE_MGMT_PORT_NETDEV environment variable to point to the Virtual Function.

Actual results:

Error in ovnkube-node:
"unable to start health checking server: no mgmt ip".
The ovnkube-node container will crash. Egress IP Health Check should be compatible with VFs as management port.

Expected results:

No Error.

Additional info:

A simple workaround is to not return an error:
go-controller/pkg/node/node.go
@@ -660,7 +660,8 @@ func (n *OvnNode) startEgressIPHealthCheckingServer(wg *sync.WaitGroup, mgmtPort
                        return fmt.Errorf("failed start health checking server due to unsettled IPv6: %w", err)
                }
        } else {
-               return fmt.Errorf("unable to start health checking server: no mgmt ip")
+               klog.Infof("Unable to start Egress IP health checking server: no mgmt ip")
+               return nil
        }

Description of problem:
Installed and uninstalled some helm charts, and got now an issue with helm charts on all our releases. The issue is solved in 4.13.

The frontend tries to load /api/helm/releases?ns=christoph and the backend crashes with the error below.

Tl;dr:

It crashes here in the helm lib: https://github.com/openshift/console/blob/release-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go#L66

And the missing out of bounds check is added on master: https://github.com/openshift/console/blob/master/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go#L66

As part of the helm bump https://github.com/openshift/console/pull/12246

2023/02/15 13:09:09 http: panic serving [::1]:43264: runtime error: slice bounds out of range [:3] with capacity 0
goroutine 3291 [running]:                                                                                             
net/http.(*conn).serve.func1()                                                                                                                                                                                                              
        /usr/lib/golang/src/net/http/server.go:1850 +0xbf                                                             
panic({0x2f8d700, 0xc0004dfaa0})                                                                                      
        /usr/lib/golang/src/runtime/panic.go:890 +0x262                                                               
helm.sh/helm/v3/pkg/storage/driver.decodeRelease({0x0?, 0xc000776930?})                  
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go:66 +0x305
helm.sh/helm/v3/pkg/storage/driver.(*Secrets).List(0xc000b2ff80, 0xc0004bbe60)                                                                                                                                                              
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/secrets.go:95 +0x26f
helm.sh/helm/v3/pkg/action.(*List).Run(0xc0005fb800)                                                                  
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/action/list.go:161 +0xc5
github.com/openshift/console/pkg/helm/actions.ListReleases(0xc00037d680?)                
        /home/christoph/git/openshift/console-4.12/pkg/helm/actions/list_releases.go:11 +0x6b
github.com/openshift/console/pkg/helm/handlers.(*helmHandlers).HandleHelmList(0xc00014f000, 0xc000844960, {0x351ae00, 0xc00086d180}, 0x7fea2c6e5900?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/handlers/handlers.go:154 +0xdb
github.com/openshift/console/pkg/server.(*Server).HTTPHandler.func7.1({0x351ae00?, 0xc00086d180?}, 0x7fea56daf108?)
        /home/christoph/git/openshift/console-4.12/pkg/server/server.go:286 +0x3c     
net/http.HandlerFunc.ServeHTTP(0xc0009b8170?, {0x351ae00?, 0xc00086d180?}, 0xc000c5b9f8?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f 
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc00086d180}, 0xc000248800)       
        /usr/lib/golang/src/net/http/server.go:2487 +0x149
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc00086d180}, 0x7fea2c5c8248?)
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af
net/http.HandlerFunc.ServeHTTP(0xc0009ed667?, {0x351ae00?, 0xc00086d180?}, 0x109034e?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.serverHandler.ServeHTTP({0xc001048120?}, {0x351ae00, 0xc00086d180}, 0xc000248800)
        /usr/lib/golang/src/net/http/server.go:2947 +0x30c
net/http.(*conn).serve(0xc0007580a0, {0x351cca0, 0xc000145740})
        /usr/lib/golang/src/net/http/server.go:1991 +0x607
created by net/http.(*Server).Serve
        /usr/lib/golang/src/net/http/server.go:3102 +0x4db
2023/02/15 13:09:09 http: panic serving [::1]:43256: runtime error: slice bounds out of range [:3] with capacity 0
goroutine 3290 [running]:
net/http.(*conn).serve.func1()
        /usr/lib/golang/src/net/http/server.go:1850 +0xbf
panic({0x2f8d700, 0xc000273440})
        /usr/lib/golang/src/runtime/panic.go:890 +0x262
helm.sh/helm/v3/pkg/storage/driver.decodeRelease({0x0?, 0xc0004dc8a0?})
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go:66 +0x305
helm.sh/helm/v3/pkg/storage/driver.(*Secrets).List(0xc000de8e88, 0xc0011cb400)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/secrets.go:95 +0x26f
helm.sh/helm/v3/pkg/action.(*List).Run(0xc00068d800)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/action/list.go:161 +0xc5
github.com/openshift/console/pkg/helm/actions.ListReleases(0xc00037d680?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/actions/list_releases.go:11 +0x6b
github.com/openshift/console/pkg/helm/handlers.(*helmHandlers).HandleHelmList(0xc00014f000, 0xc000844960, {0x351ae00, 0xc000b60b60}, 0x7fea2c47e700?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/handlers/handlers.go:154 +0xdb
github.com/openshift/console/pkg/server.(*Server).HTTPHandler.func7.1({0x351ae00?, 0xc000b60b60?}, 0x7fea56daf5b8?)
        /home/christoph/git/openshift/console-4.12/pkg/server/server.go:286 +0x3c
net/http.HandlerFunc.ServeHTTP(0xc0003d72b0?, {0x351ae00?, 0xc000b60b60?}, 0xc000bcd9f8?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc000b60b60}, 0xc000cabd00)
        /usr/lib/golang/src/net/http/server.go:2487 +0x149
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc000b60b60}, 0x7fea2c6d9838?)
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af
net/http.HandlerFunc.ServeHTTP(0xc000344f47?, {0x351ae00?, 0xc000b60b60?}, 0x109034e?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.serverHandler.ServeHTTP({0xc001048180?}, {0x351ae00, 0xc000b60b60}, 0xc000cabd00)
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc000b60b60}, 0xc000cabd00)                                                                                                                                                         
        /usr/lib/golang/src/net/http/server.go:2487 +0x149                                                                                                                                                                                  
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc000b60b60}, 0x7fea2c6d9838?)                                                                                                                         
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af                                                                                                                                                      
net/http.HandlerFunc.ServeHTTP(0xc000344f47?, {0x351ae00?, 0xc000b60b60?}, 0x109034e?)                                                                                                                                                      
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f                                                                                                                                                                                   
net/http.serverHandler.ServeHTTP({0xc001048180?}, {0x351ae00, 0xc000b60b60}, 0xc000cabd00)                                                                                                                                                  
        /usr/lib/golang/src/net/http/server.go:2947 +0x30c                                                                                                                                                                                  
net/http.(*conn).serve(0xc000758000, {0x351cca0, 0xc000145740})                                                                                                                                                                             
        /usr/lib/golang/src/net/http/server.go:1991 +0x607                                                                                                                                                                                  
created by net/http.(*Server).Serve
        /usr/lib/golang/src/net/http/server.go:3102 +0x4db
2023/02/15 13:09:09 http: panic serving [::1]:42956: runtime error: slice bounds out of range [:3] with capacity 0
goroutine 3261 [running]:
net/http.(*conn).serve.func1()
        /usr/lib/golang/src/net/http/server.go:1850 +0xbf
panic({0x2f8d700, 0xc000273740})
        /usr/lib/golang/src/runtime/panic.go:890 +0x262
helm.sh/helm/v3/pkg/storage/driver.decodeRelease({0x0?, 0xc0005f6000?})
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go:66 +0x305
helm.sh/helm/v3/pkg/storage/driver.(*Secrets).List(0xc00094a570, 0xc0003d79e0)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/secrets.go:95 +0x26f
helm.sh/helm/v3/pkg/action.(*List).Run(0xc00068d800)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/action/list.go:161 +0xc5
github.com/openshift/console/pkg/helm/actions.ListReleases(0xc00037d680?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/actions/list_releases.go:11 +0x6b
github.com/openshift/console/pkg/helm/handlers.(*helmHandlers).HandleHelmList(0xc00014f000, 0xc000844960, {0x351ae00, 0xc000b48a80}, 0x7fea2c403300?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/handlers/handlers.go:154 +0xdb
github.com/openshift/console/pkg/server.(*Server).HTTPHandler.func7.1({0x351ae00?, 0xc000b48a80?}, 0x7fea56dafa68?)
        /home/christoph/git/openshift/console-4.12/pkg/server/server.go:286 +0x3c
net/http.HandlerFunc.ServeHTTP(0xc0011cbb60?, {0x351ae00?, 0xc000b48a80?}, 0xc000ff59f8?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc000b48a80}, 0xc0002a3c00)
        /usr/lib/golang/src/net/http/server.go:2487 +0x149
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc000b48a80}, 0x7fea2c478e18?)
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af
net/http.HandlerFunc.ServeHTTP(0xc00084bfc7?, {0x351ae00?, 0xc000b48a80?}, 0x109034e?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.serverHandler.ServeHTTP({0xc000c3f890?}, {0x351ae00, 0xc000b48a80}, 0xc0002a3c00)
        /usr/lib/golang/src/net/http/server.go:2947 +0x30c
net/http.(*conn).serve(0xc0008a9f40, {0x351cca0, 0xc000145740})
        /usr/lib/golang/src/net/http/server.go:1991 +0x607
created by net/http.(*Server).Serve
        /usr/lib/golang/src/net/http/server.go:3102 +0x4db
2023/02/15 13:09:09 http: panic serving [::1]:42954: runtime error: slice bounds out of range [:3] with capacity 0
goroutine 3247 [running]:
net/http.(*conn).serve.func1()
        /usr/lib/golang/src/net/http/server.go:1850 +0xbf
panic({0x2f8d700, 0xc000273a88})
        /usr/lib/golang/src/runtime/panic.go:890 +0x262
helm.sh/helm/v3/pkg/storage/driver.decodeRelease({0x0?, 0xc0005f78f0?})
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go:66 +0x305
helm.sh/helm/v3/pkg/storage/driver.(*Secrets).List(0xc000de9560, 0xc0009b8c00)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/secrets.go:95 +0x26f
helm.sh/helm/v3/pkg/action.(*List).Run(0xc0005fb800)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/action/list.go:161 +0xc5
github.com/openshift/console/pkg/helm/actions.ListReleases(0xc00037d680?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/actions/list_releases.go:11 +0x6b
github.com/openshift/console/pkg/helm/handlers.(*helmHandlers).HandleHelmList(0xc00014f000, 0xc000844960, {0x351ae00, 0xc000b60ee0}, 0x7fea2effb100?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/handlers/handlers.go:154 +0xdb
github.com/openshift/console/pkg/server.(*Server).HTTPHandler.func7.1({0x351ae00?, 0xc000b60ee0?}, 0x7fea56daf5b8?)
        /home/christoph/git/openshift/console-4.12/pkg/server/server.go:286 +0x3c
net/http.HandlerFunc.ServeHTTP(0xc0002a91d0?, {0x351ae00?, 0xc000b60ee0?}, 0xc000c319f8?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc000b60ee0}, 0xc000cab000)
        /usr/lib/golang/src/net/http/server.go:2487 +0x149
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc000b60ee0}, 0x7fea2eff84e8?)
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af
net/http.HandlerFunc.ServeHTTP(0xc000df4be7?, {0x351ae00?, 0xc000b60ee0?}, 0x109034e?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.serverHandler.ServeHTTP({0xc000d2d320?}, {0x351ae00, 0xc000b60ee0}, 0xc000cab000)
        /usr/lib/golang/src/net/http/server.go:2947 +0x30c
net/http.(*conn).serve(0xc0002688c0, {0x351cca0, 0xc000145740})
        /usr/lib/golang/src/net/http/server.go:1991 +0x607
created by net/http.(*Server).Serve
        /usr/lib/golang/src/net/http/server.go:3102 +0x4db
2023/02/15 13:09:09 http: panic serving [::1]:55334: runtime error: slice bounds out of range [:3] with capacity 0
goroutine 3328 [running]:
net/http.(*conn).serve.func1()
        /usr/lib/golang/src/net/http/server.go:1850 +0xbf
panic({0x2f8d700, 0xc000273dd0})
        /usr/lib/golang/src/runtime/panic.go:890 +0x262
helm.sh/helm/v3/pkg/storage/driver.decodeRelease({0x0?, 0xc000d0b020?})
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go:66 +0x305
helm.sh/helm/v3/pkg/storage/driver.(*Secrets).List(0xc000de98a8, 0xc0001cb670)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/secrets.go:95 +0x26f
helm.sh/helm/v3/pkg/action.(*List).Run(0xc000dad800)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/action/list.go:161 +0xc5
github.com/openshift/console/pkg/helm/actions.ListReleases(0xc00037d680?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/actions/list_releases.go:11 +0x6b
github.com/openshift/console/pkg/helm/handlers.(*helmHandlers).HandleHelmList(0xc00014f000, 0xc000844960, {0x351ae00, 0xc000b610a0}, 0x7fea2effb100?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/handlers/handlers.go:154 +0xdb
github.com/openshift/console/pkg/server.(*Server).HTTPHandler.func7.1({0x351ae00?, 0xc000b610a0?}, 0x7fea56daf5b8?)
        /home/christoph/git/openshift/console-4.12/pkg/server/server.go:286 +0x3c
net/http.HandlerFunc.ServeHTTP(0xc000430260?, {0x351ae00?, 0xc000b610a0?}, 0xc000e469f8?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc000b610a0}, 0xc000537900)
        /usr/lib/golang/src/net/http/server.go:2487 +0x149
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc000b610a0}, 0x7fea2c6da648?)
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af
net/http.HandlerFunc.ServeHTTP(0xc000df53f7?, {0x351ae00?, 0xc000b610a0?}, 0x109034e?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.serverHandler.ServeHTTP({0xc0005f7a10?}, {0x351ae00, 0xc000b610a0}, 0xc000537900)
        /usr/lib/golang/src/net/http/server.go:2947 +0x30c
net/http.(*conn).serve(0xc000c203c0, {0x351cca0, 0xc000145740})
        /usr/lib/golang/src/net/http/server.go:1991 +0x607
created by net/http.(*Server).Serve
        /usr/lib/golang/src/net/http/server.go:3102 +0x4db

Version-Release number of selected component (if applicable):
4.8-4.12 doesn't show a helm release list.
4.13 works fine

How reproducible:
Always with this Helm chart secret:

Steps to Reproduce:
Unable to reproduce this manually again.

But you can apply the Secret at the end to any namespace and test it with that on 4.8-4.12.

Actual results:
Crash

Expected results:
No crash

Additional info:

Secret to reproduce this issue:

kind: Secret
apiVersion: v1
metadata: 
  name: sh.helm.release.v1.dotnet.v1
  labels: 
    name: dotnet
    owner: helm
    status: deployed
    version: '1'
data: 
  release: >-
    SDRzSUFBQUFBQUFDLytTOWEzT2JUTkl3L0ZmMDZ2NzRPZ2tnS3h1NWFqOFlZaUVVaVVUSTRyVFoybUlHREVqRDRSRWdHZTJULy83VXpBQUNoR3pMY1pMcjNyMnFyb3JGWWVqcGMvZDB6L3k3SDFxQjA3L3AyMUVhT21uL3F1K0hEMUgvNXQvOUIzK2JwUCt5blJoRnVXUDNiL29jd3czZU1kdzc5dnFlRzl4Y2oyNVk3djNINFhBMFpKa2g5Lzh6N0EzRDlLLzZ5SHJOVzdhRG5KUThUMzRrY092SHFSK0YvWnUrRkNhcGhWQVBSa0dNSCtwZjlaUFVTck1FQTExKzU2b2ZScW1ETDMwUGpTamI5dDdMZC9jOUs0NTdmdElEbVk5c1AzVC92OTU5MU52NXpyNlhlZzY5MmtPUm0xejF0bGw0OHozOEhrYVFYT2dCK0lIaW8vZnUzVU9FVUxUSGQrVW9kWHFwWjZXOUhIL2lNL2w0NElScGIrOGoxTnM2Y2JSTmU5LzdkOXV0RkZpdTh5MUQ2SHUvWjRWMjczdS91c0piY1BQMTRlRjd2NWVGcVk5cXNQaEpOY24zdmE4aGRMcnZYZEhQKzNoQSttWGc5S3dzalFJcjlhR0ZVTjdiUmdnNWRpL0swdmY5SDFkOTZGbmJGTk0wY0ZMTHRsSUwvOTJtKzg3WkpoVGp6SHZtUFh0Q2g5dmV4RUZCajR6VlM2TUNManc1U29VSzVjaUhGbjRuNlYvMU4wNitqN1oyMHIvNVIzK0w1eHM0K0hMeDBYOWU5YTNZVjZzUDc3aitWZDhLd3lndEJyajVONFg5WDlrVzlXLzZYcHJHeWMySEQ2NmZlaGw0RDZQZ1F4UTdZZUw1RCtrN3owSEJPL0owOHFINForc2d4MHFjNUlNZDdVTVVXZmFIcldON1Z2cU9mdjhkbVdqWHRmZXBlK2ovK0hIVlJ4SGM5Ry9DREtHcmZ1b0VNYklJbC8yalFsOTE4WVA4OWY1dStUNTl4TGlrT080N2d5U1ZSQlJJd25CcGFvL0kwR1UwMjZERFVoc2ViSEdjQUlFZlBTeGlFd3pVWEJLR1h4VjE0Um82djVkRWRKREVLV3Rwanh0TEc0YlNrbCtCbk9jc1RSMUlFeVV5bDd4dmF5Z3hCVDRCbkgyWUNYeHVhOWNmQlRmZUdUbTlKb25UOVd5US9rMFNVV1p3ajZ3cHJsd3BVSGEyT0VTMk1Nd01qVVdTZjV0SkUzWWtDVXhxQnFNRWlLT0I0TVpmd1VCQitEdUd2bkFkYmNSQ243OHpkVDRCQTVTYTJwQ1JKbllNeEwwTEEzVVBCbE5HRXFaakdFNm5RQnVIcHNxelFOejdrampPVE9IV1gycXNaM0xxd3RZZWswVXdYbHZNS0RCOXliVzFJV05wZTljV1BWVE9sYzViM2dHZFQweGRRVE9mL3dZQ0diWG1ITU9jWHdPTzNRTlJaY3psdm9ReEp0OWY4Z05MZTB3a2NZb2tjY3phNGlnMWRDVTJ1SEVDSmhzWGtubXFHMGtjc2Jady9ZWFNTTTFNUW91Ly83My80NnFEdVAveUhCUTcyK1I5R3FNMmZSVmtCaWd6bDdlK0tZNFlFS2pNTEJoNlFGdjVrc0JpK3Y3TnlmbU5xWm1lclQweVRWNGd6N2t6WkhwZ29pS1lEME1nam54RDIyY2dHS2ZtYXNTWitqUzNORXdQZGlTRTZkOW1TeDZCWU9IT2RIWWt1SGhzeGpWRk5iQzBJWktFNlFZTWxNelVGeGtReDc2cFBSNGsvelo5MEprdmxxZ21ZRGs4V01Kb2JZbmozUDRjdWM0Z2NXY2JPVEwwS1ZQQ2dwL0YxeTF0dUFZVGRkT1lWeWdqSUtwcld4emw5OGZ4c3hwc3NlbmZaZ3ZPODJDNHlCWTZ2MWNETlljYzJnR2Y4TG9ISjdlWk5WQjlVNTltbU1Zd0g4WWdKL004V05vbysrcnpmM1B5czJOOGtpWmpsdkpuRXg4WWJpdzdzeUJsalVETk1ieW1QczhzN2RNT2FPUE0wR3hrQ3F6djNCZnpSbE04Rnc5eXEyekZxYmtkb0xXNVBNSUlCandDb1J4Wm1zbk1BclNiRGFZc0NKVVlhS3VQa2xqSTBXMkJmMjI0SWZBOFFRL0lxWW1weVF3WVRPZUdOa1ZnTWkvNTR4eE9pSXhTZlBBeENPVEV4bnhRcHpIbWthWGt6cDdHYlF4Q21URzA0ZHJzbVBzOUdZTXYrTFNZQzRFcituS2V2MUdLOFhsZmZsK250S0RQamxrd1diaGZudEU3WDVhM21ScU1FMXRURCtWNGhkeGdXbjZrY0ZaeVVjajJrREUwV1BKb0liZUV2OC9JTFRGU01Bb2ZmUGQ5YmdXb1V6ZHJodmJJWWw0eFFqVUc0aUl6dGFGbkJJK0k2b1RZZ3lMU2F2eFo2S0hoRG9wcUJqa3ZOc01GNFRON2ZmZkY0bEJtZm83Y0JSbEwrUXk0WVdCcDhBdlFWTWJRRk04Vzd6NEsvcTFMYUZmUW8xUFdLaDF5VGVZckNYeFM4QTE1WHhKNFFxL3VkeDg5STFBVG1CUGUrQ1NKd3hnRUNnTGh3cFhwbkE1UVZOZGYzY2dsZW5EQ3MvYm42SXNrM0xyU1JObVI2d0w1eHRiU2hwdFNKby8wb3ZwNkZoVHZDa1B5SEpFQkF0dXRLNGtFL28vUzVLd05valJkTmVkWjBZWGFqOGpVNytwOFVPSGUxcFc5clM4eWdtL2gxbGZFMGRyaTFKemFtNVhmNUs4VGVQZTJMa2NyVGwzRFFHV09jUE9ONnpVODFHVHh3bkZiT2tvUytBTzI5d2EzS3VuSU9EcVB4NTVZK29MU1FMVGppaDdDcld2cjAvanN0ME0xdDRqOFZyRG1wbVpRdkhmd05nelVvSzJ2VCtjajcwQ29JR2VpM0ZtNlZNQ040V3BjUC9zTmd4dGx0cWhlMjNkS0RQMldiaWx3RFFkS2J1Z0tNZ2ViTmg3dUMvd1UvQ2p2YkgyNk5sV1pnY0dZTVRWN1dLTkxBSU5SZXZ5TllVeGpFQ3crU25kVXA2d0dTbTVxNDFRVngySEZtMEpUL2pyNGkvSW0rYWJxQVZYeHpMelFYUVg4VCtrUGkvbzg5L1praWd5TlhSa2F6R3hkUnFzQTI0RHhnZks4ZW9EaXVMQTVkZmhyOTg3cGExM2VHNXJjZ2tWTklMYzYwcXJHdDNEQWU1amZ6dEdyQzE1dy9qdUZyeFM1ZUx5elBCUmlQL0R4M3RUazNOUVhEYmpnUkUzQVdFYkdZSXJxZlA2c25IV095Wi93RnNXam10bnI2TXRSVHhwZGRFWWdOTm80STgvYkV6NlJCSThCTFBLQXRqLzNia3owbHNCbldQOFIzL2l6K3pSY3dxMDdXNWJ6dlBXVnU5SHFmcU91ZEZaZUxkVHBTbFg1aDlWNCttMjVVVCtyZ2xTREM4c0NoZUU4Zm1RRyszSzJ6aTlnTVBvLzJOK1FKbnNYNnVyT0ZsZE4vZHF0R3dyZHBCNHFPYTFkSytXTWpERlJkcG8yVG9IUUJjY1VRVzdFd2tCR01PKzBQeWU0c1NmVDJPUnNCTVBTdnQzaWJ3eWh1UG9vM2NrN0VKaXh5Y2lSb1ExRHMvVit0KzJuWmordzRoZFlmbE5VOTBBY0RXZkJlQS9GUnh3dE1OamFyeVpUYk9WelcwU1k4Z2dFWTU5RUR4anFZTHkzVkJQQlVJNEJkLzFSbWhpUFFsQnFueEppMW9PM2NXcnFpbWVLWThhNEp4eDVvV2VIclhSaDBRK2xsYWFTMS9sdXd6UGZ1d0I3YjFnYWhGdHFrWUtqRjRJOVppQ2lOWTZRQUhlZHdmcDhENUg3SUREMTd6RlFiRWpDaGthRm02dzV6aEJ6Mzk3VXA0eUZ1U0xrYyt4TncxQ0pUWDEremlONUFVWHRLdVBTSXFtaDgzRVZKS3dqTWkyWWo3ajVJaTRkbUVZQUt3UXNzc1h4eHRBVmp6cEJ6em9yallDWk9IQUZtaHRDMGYxdWNuVDQyOHBpMGVYMGRCaGtOVE8wYVdKcTJMRldIN3VFRnd4VUJrNnc4MGRZMEpVMnB3WlE4amVsY3ZKQU1OelpJbVh6aXEzRTBoRWY3VTF0ZUxCRUZCQkhMUjh4TUVDaHlhbDVneTJFVzFmYjE0elhKR2txTEdGS0RMUzBqdjlXVjRERlBlbzBycU15U1ZBM1FQN3NObW85ZitzWFl2RlJDaTl5S3YzbXQvblJ5ZGhZVkxYSHpRcmpROERqeTN0VG0yTW5Kb1hpbzJlTHF3d09lR1Rrd3pYZ2NCQ0NNaHdRYUFmZUxvTVhxZTZFVEk3NDBkdktqbzc5c1ZDdWhkak1UNHh6cFpLd01xVXE2YWlVcTJCU0twMm4xTkNWdFhYWFVoTlA4K1dCSkNJR3lnNXVuZ2dZU2hVMFVSRFErUVE3YlNYUHQ0TWF5a09uTUx3MldQa3FISjBqZ3Y5RDlPVnA5WTB5U3lkQlYwV2pwbE53ZXIvaFBOYlUzSmRPQTZkZ1d1eWNKWVlSTVF2aTZJNWpnSFZQdmprRGYzekdRU0hPdEdkcHc3clJhemtJL01EVVdrNUFJYU5QbVkvQ29mdmExbGsxZXBERUhTenhPWmw2SUxCUk4vL3hPeGdxaDlNeDhQOU0wNUUrQnZBdFBVQytXWmVkQmY1KzZjalk0amczT1pWWmlhUGNGbG9PY1VVYmJFYVVuY0dOa3ZJOWJLNXNjYlFHM0w2VkZEaml2ZVg0VlNhcnk5bXB3WnFiZWhGNDZFM2ExUG1rd3prOE0zN0RERC9PdTRLaXpvQ3M0cmZFMGswRUF2VUFXVDRIM0JSMXdIenlUSU8zWCtiY1Z2QURFWEVtNXMyQmpNMjVieTVQK1h0K0w3MEc3NTRwWWg2UUQ5aTlNb0lPZmlGMlFJbmZhaTRkMyt4dzNPL3lyb0Q5YVgyalpyWi95cSttTnVSK0JsNzgvcGZsaWZ2MkdyNUJJRFJGWW9OUCthVzY5N093S3VGMEIxN01IODF2MmNFb3NUVVczV3NqRm9USzRhdjdOUDg4NldyVy9LUXVIVlRUcXg2YzhJbWx5WjR0b2gzdzJYMTluRk05aDIwZGdXOWg2RXAwR29CVitHNk9peHF1YjFZZjQySmVDODBkbUtpcHVXSjN0alprWU42bEoxOU90emJlMzRyZm5JbVNHNnVHYmJzMHdEN3lsdTR4TUJnMzdIVUhuTmZkaWJZbWY4Rm5mWWNMUWovL1ozbUsyTUxBMG16WjBHOVA3Y3VsOGNocitFaC9QVjBxbkw3UTUra081OGdLZHBKdUhTczRGNkwvcG5pb0hUOVMvMm5Wc1FoVUQvR2I0LzNWWXNyU1g1YklJdkZvYSt2OEFuQ1BzWEZNdUNhQWt6M3dPWEx0eVpSOVdWSmxHMldwYzBsQ0paenViRjFCYmMzY3hqZ01SaXlPc3A3RStKaU85UmZHTkFPcVNMcUVXVVl3Tk9NcW5mMEtXQ0gyaW8vTE14NE1iR1NQc1ZlK29PTk1sUDJaS0NYSFVrQ1d6ZlJwYU9yS2dpN1hYNzlBU3hSMEM1V2tTL3ZaNGhGM3Rxam1RRU5aa1VSNktwS3RqOG1ZK2pTMXRHR2hMWS9Xek5Kd1pDcXpNRkRIcG1nanRUSCtzT0xpRjM0bkJxR01qSUdhbXl0MVkzTHFxdkZkeE8rd04rRXNuMHBwbitJVFRPYVp4YW5EMnRMUjF0UXhUUHUwMHVaa3JKZU8wN0JvM0dVcDkrNXhUVkU5MkdLRnQ4K0xsVXc5a1lCNFQ3VUlndCtZdXN4VU9ObkkvSUlqbGkrZzFtejFxbms5Ly8yM243UEJqVDlUaTJzU1MxNWZYam01ZDkvTVpKSHZQczlQYStPM3pLT0IvL29TWE9QYlgzMyswK3k0OUVjMGVIY0VSUFVybHR0WjhCcjRPNzNBMHVNNHMveWVPTnVkRDUxbnNyWDFaZk9xRkdQeEYwdWExN0oyOWdUdE81WU9qN2d1NTZDUzVZdHEyYmZLdHEyZmg2ZTdYS1RiL3RTek9SZG1zZWg3SFY2Y1hKVkQvZk9xdjdOUTVwQnFQRkpQUWNyeW9qQjFIdFBQL3JZc2ozTkNDeURIN3QrazI4ekJQM2ZsSGVMbkxZbWZkMis1SjdXSE53TlNiWWl2SmJFRjhZMnFxcTkvMWM4U1I2RjFmUEx4aVFjTEpjNlBxMzZVcFhGR1NoczNmbWozYjJpWjVmRmJWLzA0Uzd5bEE3ZE9Tc0g1Z1M4aFZMOTAxZDg2RHhVNE1ObzY3eWhJV3llSnNpM0VVNmZQSmFtMVRiUDQyelphT3pEdDMvU3RPTVlnYnYzdTZzU3l0TkRaT1NpS25lMkhoUFBmMVQ3alBQWi9YQlZWckhnU3RlckpiMXY4UXVwVHZGZklKUk8vNmdkUkZxYmZyTlRyMy9Scnl5TGxvdGNIUFBIYUFQMy8rWi9lY2NDZUcvVThaK3ZnYjlmSTVJUzc4VFlLcXArUDZkWVNvakMxL05EWlZpandRejg5dllyOG5STTZTZkp0R3dFSEE1ekNlQm5CalVOb0UwZmJ0RUFRcWFyRXZ4dFZsT1RPVmZIY0orWVRROEJQSXhpaC9rMy9YdmpXditxbjF0WjEwbS9WSTVneHQ0NWwrNDN2NHBIRTRxc0ZlcXFCandCc0hZTG5wSC9EZGxDWitMZ05yRk9XcmtOUWdwd2lXcVZxQ1JpM0Q1aDRUamtPUEwxa08wbnFoNFRBd20zSEs2MHYrbUhpd0d6cjNObXVjKzlzZytMVmJ4SHlZZDYvNlN1TzdXOHhKNUpLMjJPaGF2VWs5czV0MXlHVExwVHhmUjVqbEFzb1MxSm5LMkhVN2lLVUJjNGM4MVNGQkhvdHFZVEdSUkd3VUNtOFgzZk9kdXZiVG5XYnlQaFJ0QXRBc0xUM2lTbElLUWpRY3dJU01wU0xScjV5TURnUEFlM08vK3JmK3RaRVllRG5hRGZqNGdQZ3JsUEl5Wkdwc2Q0c0dPVm1QdHJBWUJ6WUFyT1g4MUgxWHJXWTAxeG45TEdwYUFUVzVVTE5PbktkL2VuaUVsSHJTK21qSkV4M1JoQWpZN0RvWElUQ2JvMHhtTVp3UXR4ZEFyZFNWUHpCbkdjc2NWVUdrS1F5VlpyWUhsYXB0dmpKTFlMVFhlbGFTUDcrTkZIKzNEeTZGc1JPRnQ3T3pHMmMrSENnNUtTcTJOKzdVakFrMWJyNmN2L2srMTF6TGlvSGQ2Wi8yWnhuUG45WFZzTmlmSUVDWjdDc2ppa1NLak5mNm9acHdpVG44R0hqb0w2YnZ2V0ZSMUpwaEorVFFwbUIyTlRuMHJreEM5NVJFT1RrM05KNWtod2k3eUxGTXduc1kwYWFvSjI5NUFjR3FZNVdkbVZGODR3clRlM1p1WnhjYnlUMTJuTXRFaUMvZ29kTDkwQ2FUQkVReHd3TzFUSDlHaFhhUDhtdng4cktDM2hXbVBxQUcySGV5RHEvLzV4c0Z0K2NjVW9NT1J6R3J1aWM3a2FmVndJdjBHcWVWL0NhUG8xL0g2K3B5eVdWdFltbEs1S3RTVVgxdlJ6YjRpaC9nci9Pd2s4cUFYOFgvQnM3dG1sbG90Lzlic2VpZk1WZkhWVk52dzN2dkdlTExwR0QyV1k0VmdWK1g4RWdtakhtSlRDUVhEaVo3cXhBWGRzQ3Y3SDBLWFh6dzAwbXVkMHdQcHpWdDFPeVNHcnFIcU9JS0w5a25sbytQZGlUYVF3QzZNK3diUWpWQkFoVCt5eGU2ZnM0OUYvREFPMXBHb2JJMitjU0JrbFVZaGpRaW45bnlROHNYWWtzN2Jyc3VKaFkrb0x5SWRYakxPUldycUhQcVh4TnBqc3dXTGhtTU1xYkhSeVg4MnBIaGVKVGVxYmdHeEorRVIwQXVDbWwyU3YweDVONmNUTFByWEplb3BwUEIzUDNoY1VzZFJvMEZncWVwL2xGdHYvblpPSkNINkJyN3MrT2Y1N3VkZGhaeUtsVjUweWpDdlpsK0RyaENTTVk3WUNvZXNEL09Sd29vbHFtTXJIL0Z6K0JDOWZTNXk2V0gycFRHMVhBUXpEQXNqTkZsTTlVRDNLWVBsaXVwR2ZwKy9DMC8xYm90L3IzL2l6ZnFLZnpwMzdVc1NqbVVPaU02V2tsOWd2d3NZaWU0cmVMOVUrNW1IU1IzUWxHUHJVSnI3RTc4dDdVNU5nTUVPYXBnU1dxT2NYUjBjKzJPWlFBZ2ZmTkplMWFLUFVTNEliclV0ZmF3clY3cjQzd3V6RUl6QjBNV0pyaVhVY3VpYlVtODQremZMUUJuSHhvRmYydEFjZnNqRnFCMDR3V2Z3VmdNRTFuaDBVbSt5T3E5eWJ6c3NNSzI1NjA4UGZUNHdLY3h3QnQvMHQwSU8zKytMTzgzSkwvQ0F4Z0lkOUZ2RmwwU3hyQnlvVVQ5V0NKNnVZWk8xU0hGNEZRVFF2NzNpVUxpU1JNN3dBbmIwMjl1TCtjMm0ra2M1dmRMSy9Tc3p5bzQxa1NwcG10UFNZU1luNEs1eXVNUjVKU3BaMEExQmJ1WFZ1WGtTbndPeEE4RHVrQ01sMzgvWGJQdUZORzJSbGNpbUN4RUR6OUEzcWswZmtnL0ptNFhXM3dKdW5XZFdGQjQ1blB5MkF3eGZjejdMY0JqUlpEZlBYNXlKNG9lM2lJZGpOTzJSbURlV3VwVnQ2QjVhaFc0Q2NWaGJOWTV6QTdXYmptWmx4TnY0eEh0RkJYcitzTys2SHc4dzZ6Z1hyQWM1MXBSVUd5VHVCTVN6aGhQb3hza1UxZTRWOGpFQm9YK0k0OGtJSnhEb1B4OEdmeHJvUlRaR29FSDZSQURNY1BwdmE0ZVJuT1Q3dGFUWEcwaHZtSU1YUjVDL05SREdpOG41SWxreVhiS2tZWmJVek5qRUd3U3ZHM0xYMjZBd0dMUUxoSTdXQ2NXeHFKaTlPR3ZzOWZGVk1laXg0dmkxMk8rWXFmaTExRUdLaUk0SEhaS09KMHNTMEY0aUtUN3RnZERMQWRIUkpiVmkxYml4NWpUL2pEVi8vVHJxT0xsdHBJVHQ2QlFFWndvaFIvbTdHSjUwdkhxRHFOWjNxOUE0WnRGSTAvZ2RjTGMwRlZicWxiajd3MC91bjBQOHBsTFJ5ell6bFdOeVN2UlgyeVRXTTNBSEVVa1B5WExyWDdTVHB6VDQwZWsvd3BIVGpOOFhjd0R6LzkzRW0rS0FhaGdreE96VjhUNzkySGFvcGxqYzZMMzVta0dMaUVnOFM1NVZMZkszSVpkYjY0VFAvWGFQaG1lcWdocjIramo5YkUvOVI1cHZnN3NEU2JoUUVkWThheEhnaXdqOExXWmJPaGQyRCs2VFU1b3FMTVJsMlZPdVUzNVlDeFBOQ3hDTDlVNVQ0MDl6MllJb1B1WlBGV09EMlkrcFN6TktKWHNINGFnQUZwcEFsbmcrcmJPMm5BczBid0dFUE9JejU1dFNTdHo0OS9MMWtDTjN5Tm5oZEh1VDJaWDVTRE1mUnBidWdiL3lkMWVqVi9MSnVrTWVIdCtmWmxPT2JvemdqVVQ3bXI0ZlUxZHBPVVoveituQmIyejN3ZSsxVFlUOGpNblBlQXozOWJzTGRsU2Q0dmlkc3VXQWM0RTF0UGQ0QjdSSVoyL1F4OHorV2xGVlNXcjVra04yTlV1VXVibE1iSUVSaW9pVW5qN0FKUDZ1YWMzL2tpWGRWY3I2bzF2dndGY2pKRXBoWXU0SzVkS0k0MmREMFRIWTc0NEhjV0xUNS91N3dVS2F0NkxSKzhNTWR5b1R3YzdSYVJpZFg5ZUU1d1ltalg3ajBqTDBwOC9OcDRhWWpzaWIyRHBQd1Y3cWc4NHRpb0tHZlVGbWwxN1VVNWxsZXQyWjJScGFxYzkvSjMzMEtXTDgvSkVocEN6dHZaWktjcFRMUGpIQzZCLzBVODNaRHhSbm5zeitQcmNubC96cjVPUWFEUWtzaHE3VVpCTUdCalVQaHRSU2YrTDhYVEM4dCsvM2ZnVDhTMkJtRVpkWTFBalF6ZGpNRkFvbXRoSXNvZ3A2NXRIZk1namlHSHlCaVFPUjZldHl1WDV2RHFNcHNpNTZLOC95L0o1ejJIeTVtcGIzQ3NubUI3UzlZaGliMlJMb0Q1UmJhM3NlWjZVdEo3U2E3ejdmSjFGL2d0TFhqSlRuZmVEZ2FJY1piOHVsVUMvZHZ3MlB6dVg1N1hQdjhoUEQxWGJ2L1RPdTUxdFFBdnQ2KzA4VjNON0FuMml3cWYrVTdtMitYcE5DWW1NWEtBNXd2YXJRYitaWGgrR1U1ZThOeTUzUDJUN3o5QjUrQXh0Z08xM21COFlZNzU2TWUrbU04NzlZS1ptNXBLOHBxU2VBTFRSVGxRR2hjM2Q3a3p1RkZLOHA1bGM2ZlA3a2xOQkluTlB6R3p0YkZyTmVnZVpseXpzWEttZWNqUUhobExLSEw0Wisrem5vSDkyL0dvM1ZnWm1kbzRzVVgzVmZtM2RtUDVYeUpQclkwM1ZxUFpIc3NMamp0LzZmcHRFNi9odkVXNzY5UVNWUTlNbEtpSUw5Wm43MnRqc2thdW42WGw1VGtSc2taeUdXMDhHRTQ5Wi9tV01rUWEvQytoeGRiV3BnZ0dRMFRqTWxUR2Z6dGJIQitzd1J6SHp5UnZNNk1icDZRdG5PN0szVU5ubXByWkFjb0JOeVI1OXBsdWVqQkF0SlpScTh2Z0svS2xnWnJaR3pNSEhQT1hXQXVqR3dpOExaNHg3NXNCQ3JHZlBkUDVuU25VMTJHa2MvZHgzSjhhK3UxT3FxM3ZtRXZXQStJK3RUaDFpT2tBSmlwK3g3UDA2V0dtb1d5bTNhWGxlRUFiNzJmYStOQ2tFWXRBYU1Zd0dHVUEwMVZnT1VPZnhpVCsxT2V2b045VHplb1hyWlU4VlNmOG5BNHJXK1dLdUVhOUpyRnVNRTRzUGNhK0I4bVhQTG5IV0k1cC9vaWV5MkhDeStiM016bUsxOVFkUDRlbk83S09TT0pwOVVEcUVxaFAxTEpydzJZdXRhZ3ZiZVVzNmpoR3BzREh3T2U5eG41endsdlZpOUdOSnFwTnNmNTR2ZGpqcnVSM1dtTlA0U3R3MllrN1cvejBWdldIcjhsei81WmFtQmZKVjdGekt3aVZ3MHR5MTAvQmM2NG01b21hQ3c1d2p5elFWQmtNU016d3gyMU9lL09UWDdHR1pJdWpuTlFDREtvTk4zYXZxRmNwY1hmNDQ3N1E1TGh4eUp2WFVneElxNnRuY3F2ZGNYT1IxL2cxSFJ2QS9YRWZzZ09tdCtjM3NrWUp4SkZuVHVZN3VuWXpJcHZVTmZ5UThGVTgyTFdwengrUjRZV21iR0RPVTNpV2pRM2xEclEraGRhaDRQblBhSzhHWjJrS3RwTWV6SGtQeDhSd3NDQTVDL3hNZlZORG1QK2MzNG45UDROVDkvWmt2ck81VVc1eGp6dER3N3pON3pCTnBBSHhNUmxUSzJMbUoveSswdzNuR2h2MXRQaC9XcDRhY1lZbUwxMHZlOXJIczBYUHN3WCtZSWtqRm9nTFVzOXE0amtHNDBRU3gyc1lqQTR3NS9lR1BpVXQ1SVkyM0pBOHVLZ1dyZlM4WkdxUHFTVFNFeWRncDA5d2daMmw5ZXpmN0VETllZQTJmNndQY21BaUdFNWpmSy93UmZLeVQ2SFk3aVdUN2xBS3hmSGFuc3lidGNIMHZ2dUYxS28yVDBHdzlMa0xSRFd3QmQ0SDRqaXo4azJCMC9aWTlIbk0wMlc5aVNtVWEvaTErcDV6Y24rNmlWaUQvOHI3K0YreUpjQlYvOEZIeldOd2xMdmJ6L083OTRGOTNPVkJ5bSt6KzQyNmt1NDhCRVRHTFE3MCtMSllOdG1nV0hJdFdtaUtFb1JnNFpidG9vUkU0cDJyNWNPdmlxcllYNW9wS21hR1JWSDRGRXRpTXlTU3hGRW0zWkdVeUQxTmlWeC9FZno1V2hyenVhbFBFZFRWR0hJSWkrR1hSYUFtWUFDTDlvdVQreVhycDRhK29lSE1aRVBLZTRvMktOcjJ4STBQNXJMNFJzNlRBMitrc3RUM05qYkJvQ3JaejB5dEtLY1Q1ZHpVU09yWmE1ZmkwakNCdEpYdXlWamlPSlBHODN4WmF6ZVNSQkxDa3pETDFEMEdtMWxESXdmemhKWXVNNlFGYmF3ZXl0YUI4cEFmaWxONUJ6U1c0TnJRNTY1QjJOWkVFSWROcmZLbFNxMU9WQXgvV1hiOVVRaDQxeENuSHVUY0w0Q2IxNTR2UzV6NURTMU5sOUlhVEM3UU55a2RpNjFLdUdkTDl2Z3NLYVZSODI5TDVWNVJwNXFpVGg5VWRUb25CeFVWQnozTWRQVkE1OHVpYjB0RlhUSHE4bjR6bHBYbGJUclRpbEp2bjkwYnVuekE2dGo4ekd4V2QrUDdGV3QvVzIyYTN6TTExck8wL1doNnA4cUxGWnFUZWQxR1h6UnR4RXFpN0lHQ3hyYm94VEEvbHAwYjRjYUY0dmhRdE9yZ01RLzBlckdoZW1PamV6WjFsaXloNVV3dnJvbTNGTThpbFJHclBCaEt2RTBrY1pRWDlGK1RNTHFXcnNCcXBtd2xNcFk4ZHd6RFVXTGVSMThNa1hjZGJaeUMyNWp5Q3RrOWl2SlJkYmlGejUvQ2N4dTdobmo3aGFvWklrOURTWndPcFFudndZRk1RM3FCU2UyeVhFSlF0TVhxVVZWVStVSFpvTG1pM1dhQ0c2MmxmTzRXSmZybFp2MFVsMFVyQkFoVXJLSVlrSmNsTlNzOEQ5SnVVT09kMlBScFc1VE5qYkg1d004WHoxQityRnBoTUE1L253elVXdzkrVmdZTzFuKzRERlJ0UUNGKzN5djVZWFE2ZjhXbCsvMDlNUWJkQ1c3VVBPeEZkYWt1NVNOcVYxQUdCNG9IeEVkM0p2RFl0dERXT202YzBlWDJNcVdIK1lId0JVMmhUS3FTWnhJeWYzV3hMUEJEUTJNVG9XaTc3end3cHpwd3BObGUwbm1nVENsenVoeTFaWTdhcGdLR2ZTeVkydVBPenNsaFo1NDBVVWphbHl5bmlhcG5jSzVMWlhCVnRyd1FXVHFXTFZWMG9vZDlZZHVIaUM1SmJWMW1pTzNWaG1FcEU0WllPMHhHdzdxbk91UUl5ME5GbDBxdkRSUVBoZ29MeDN3T3VCZ1pBNFhTWURKRlpxRG1kVmNjRE95c2JadG5HTGZQSFQ2aTNicEFWdzgyTGIwai9FRGEyN1F4USthUFhaL2kwRHo3ZUVBWUN6bDFRM1ZXWjBrNjFrOWZIZ1NldXJWTC9wTjAxd3JmSm50WEVkWEEwTlhFRnZEOThjWVVFYm1IOWNxeUdlcTZEN2Z4Snl5VHN5V1Q0bmZ4djdYLzNRZmh0dnJkY2IvMVAvOUpDUGV1MFhBRk1YL3YzZGR1dDlHWUQzRVppOWJsd2k4NzNYYUQveVNOaVJ0YjhFNTVvRjdwcTR3YU9oTHJYWTFwN29XcEw3MWYxaTVVekR1RnhiZGd6cWFHTmlUN2RWb1RKUVhDeGpXQzhjSFVhQmxqSVFmVVJpNExlb2w4N1VBeG0rQ1g3QWRhTy9Ud09ad2FCRjcxZ0czNGc4Q3ZpQnhSSDdmMDgwcmJ0b09CR21DZmtoeG1TUHk0OUxTVmoyV2lOMWpTcXkzWEtzZDJLcTVzb3lxK3A4L1RxbFdsV05xcm50V2JyVmNsbm1lNjRwa0QrZUU4L3JIK1A4RjlGWjZRdmRweG1LWXRTaG9jRDlJcGRwYzBCQ3FQN1pMY3NxVVU4Mm9SM2pSYWU1b3A4b0pQdFFXUlpXT2k1SFloUXl0T1pVcmZpZnBkV04vS3lPajJOY28yRCtLYndFRGxMT3p2YzhRbnd2cVNxVUkybjUrYjJwaWoraFFkc08wdnhxQjdxMnEzWkI1bitLb1dLai91SEJ3TGlFT0VkVC9sMGVzMnZsZ1lJRElmaFVPTU5DWmJneFRiMEZEOWEycERncGNpUGdscjJ6UjhhaXp4YzRpeEpxcGZ5R051YW9UL1UxTlVPV3gvb0tqbXM4RTh0N0NmUUhhbVU5WmdNRVV6VGIybU1sT1hyZU1obDBXYmpDZE5aSThjNW5teTFISHRMb0tWQ3dzN0RISitkd3pqQ3h3ZTQ1K1RiWFVLZTFUUnA1am56dVpPbDV1a3lSN3JlN2QrQUJybHMycExFdmNvVTdUbG5zaHljNXl6dEh2QS9sMGROL2Z6Ykw2a09wVHdXV0duelM0ZGZCWS92QStEY1dad2JpYmRZWDlmTG16Nkp4ZFU2WWJLeG5meGJubFlhaU9XZnRJbSs2WHRPWCtZRk1IYitMZ2xDcDFENlFOUXZNQlF4V090S0EySjMwanRoVi95eFBGNVd1WjNHNW5MWVRqeitUVWM0SHRSWFBodFhtdjdrY3BlbERrQjRuTnlqM1VZcU15VHVaVjZHY3NqOWF1T0IxUXFoMW83MjhFZ0tibFRtaCszZGZsei9ObzRUQzg0MmhvNFVQMloxdHFlcGJaTndNbGNpcll6N0FOajNqRjFMNFlENVVCOUVoNzdNRzA5Yy9ZUVBNb0g1N1pub0g1RXJmUnJZK295aG5OVDRzT3N4VzU0cnVWWk1GL1g4Mnl1dlpSdVJYNXBVaDNCZFN4RmU3bmVLV01hSEZNZnQvTVNXYzhXNWVoWUR0MzhSckVWMEpBYzNOek9PNVU3TkUvbUo3Uzg2R0JBaW9kelM4ZkhIRkRIUVljTk82RFJHSzJTNitEMCtjclBwSHljMWVUaS9EWWx4emlMNUFVS1hkVE03UkZhN2V0MjlpSStvd2NYcW9WL2RySmxTRk1mdkFndkdKYWFUMFYweEczYXBsTXozbFRjd29mdTNPYmx1ZTA0c0gvY3RSVU1HRWpZcjJodDNYQWJuY2xoeEJpR3JuRWVoTE5MU0wrd05ZWHlFc3hITmQrUExlakpIZzluSmY1NHk2NmNPU3kxc0MwczVOeGFEclE0VDRqU3lGVlB0bmM0Y3hEdFoyWWtDWFlMdDdETmQ0MThHUFVKdXJkRnFIVGtMeXlick5OQUwvejFCbjdaWXd4azZ5UVhsMWErZUNPWHFwVHRRS2QrZG1oU1hxNHRoUnVpbXRrQk9aRFZBMkhzWFRMWHMwdTdBOFdEWElyampvemFUNWJzMWovVFdqNEhWeDR1L1VSNTFMSlp0dFhoejFWTEhKU0c5YVhYZXB3Z3U5S0VISVQ5MFNqdG5mREhXNTFMR3RYUEtpcnN0a3pqL3BlM294TmJTdTNuVWFjMXpwRXJXODg1WWx2cUphaHVDNDhIV3h4blRuQlh5ZDViTFkzVzh0amwxaFJsL0o3V1lUaFp0ajZaVDdQbHUvQkp5STdiWkhuM2VLaDdJOCtNeDFod2p5d2NLQWh1MElMeXpKdVZNWlF3SFdaYXEzMnZndWZUR2s1VUg0Z0kyeUNzTit2dHh0WGZNeDNQaFp3ZDFwbzNiWHMrNGZWYTY3a3hxWjRwNlpnVjhTK1N4bW01WHBDUk5ZSXhFODM4VWZPYXNIbEwyZmpKZHVyU2ZwenNsUDk4M21ESkwrbXp6V1hyMmpJcGxqMEdoaXJsbjdzeFdSdUFPYjhHSXFMbFVpVGZLNU40Qy9QVlBkYlRpT3BwNnVPUDE1amVNRC9uRDU3SVlYbWFRTzBrRCtYbzR4UXR1TVdhSS9FeFZyUVYrNWpuS0gxTWdXZGdNQTdNQUsyUHZoYmhXYmZVNDJkd1IwOW9LTnV3eFNkOXpVNGNxbmVQOXpOTnpZekJkQWduWGJqOGhiWXlVQmxhWW9IbFowVG5wTTkzWlZ1ZEtiRGx0WllQMG8ySFpvdm1zTXZmSTNTZzVRTWtCMHZhU1Z1dG5UUW0xbVZFNlVCT0c2RTZmTUNYNTZ4VzEyY0MwYmtJQkhMdTZEeGpDSHNzdHg0Y3lJdzFtZTVzelk2TVorQitXY3NrT3VlL0hrOUdXZGI1cU5IeW5wdFZqS2x1eUx6R1UyU0tLSy95QVhlamZkRSs4RkVTcGp3UUgzZDJzUzJacGN0MDNjTGZ1eEk2dmlmNXo4eUxVNGVGUDVpRGdVbExLOFFVT2N1T2NzYlNYeW55TFJaZHh5dlhwekxwRHN2b2NHY0wvTm9TMWJWVnRiU1hzU1hLTU4xTURqR3paK0E2T1VHRXhtaUxzc3lvNUJOeWVvZkFlN2F1UkdBd2plM0p4bTJmNkdIVVdxaEtHL3VjdkRiSEtIS2FaVjRWei9zTnZ2SGNxUzBuZERuRytMVzJMdjd6WXNtMzIrc0NzbFZ1amVmTE5ucHlTTGpBZFBzdEo2MVZhb2NQMi9WTTZldVJVelB1VFczbGFvUHF0QTZ5cnFjdjNXeld1dmJsRi92NXY3RTlxc3UzYkoyRDJZSExqck0zZjcwZjhkbzR0SWtibUovRlJXRUg1SFAzVTBNanZQaHdyc1hwbEM5cDNOVDJvMDF0eUwyMS8vd0xXNGRPZUtScXg5RzY1MWJlK3pYeFlxUGxaZys0UlhOTHVqUDNxN2FiWEs2dmdhZUc5cGpNTkd3MzJHS05ndDBiR3NwaHpzYkFaejJDQ3p3ZXgzcFFZTDNtVm0zU0UxdmxkZmpsTHp3LzhxeXYycEY3cnBYeE44c3VxeHpSWSt5UXZDcktKUEhPWFJTNHVOZkcreWZ5Ymk4OFM3WFcva0g5d3puZ3F2VUpIRk9scEp4ZjZNdzNkN2NoWUppRVVXUDd1R1BzREhldmdyT3hsWWxjeXhXMjlHWnp5NU9PTFFhZXNFSHRzMWRQNCtlaVRIOVZuaE43ZUJPNWVMNUUvZ1JYMWIyek1LcC9ERFpMRzhiMlhUMnVsMC9zRDNsR2FKZDJ2elc4SkM1UEFEZmV3SHkwQjV4Q2MxWDY0dG44VE5lWnRLZDVwOWI1dDIrY1EzbGhlWGtKZTFrZVR1dHFWaVBPMUtjNTlsY0wvNzM2RGM4Y3hYTDBzZXZiRi9JZXBnV3QxVm00aG1ZeXBpNlYyMmNWVzVnWDk1Zlh6YlgzWWsyMGEwMjh0YjdaT2RiRGJmVDMvbzkvL3JqcTAvT3VHa2VUdGM5UStuT25qLzA0ZTdMWWY5NUJZdityVHdDNy9NQ3YxeC9VZGVIcFhQV3p0VTdPMHdxczBIL0FQMjc2Nzk2OSt4NytUMjlKampLNzZWSGUrTkI5Rk9QMzBJcDkxZGttZmhUZTlIYnM5eER6NzAxdlNaLzVIZ1pPYXRsV2F0MThEM3M5VEtGeVFQd2JXY0JCQ2JuVjYza09DdDRuM2dmb1dkdTAvbFN2WjhYeCswMEduRzNvcEU3eTNvOCt0RWZxZXNZUGs5UUs0YlBQQlZab3VZNzlEdVEzdlltRGd1TnpsZmppeDdaWm1QcjFyeWF4QXduc2FSNDdONzBLMGZoUzRpQUhwdEgyNXEwblFOaTlHUFZkZ1ZETVQvUUt2WC9Ud3p4ZFhTbVkvNlozTDN3ckx4NzVzWHo0T2FvZkpicUQ4RlljSngrTzFQOWNQZnNmelFDOW5oV0dVVW9Fc0p3RWtiRG1lK25XZDExbm05ejAvdSs3RXYvL0tQL285ZjU5L0xQWCs5NS8yRWJCOS81TjR5cStqakg3dlgvenZXVVp2dmV2Mms5aTFKQW5DN05FcGZ4N3YvN2NqNnZXVjMwSDJWaDVreGN4Wjc4dlNmK2UvSUxWUVkzL1lQNzVuc3l5UHVLUDhzOS8xdVNpMUl3M1BiWkRKZ0lyaGQ2c3pnQXZvL05MS1YzQ1gzNnV6b2Y0UDlUODlKUDg5M0xZWHM2SGwvRGlTL214MTZ1UWovODdFcTAyelZKcjdCMVE1d0ZDMG5Lc2ttZHE5K3VLcHoxVVhRR1YvMVhmL25haWthb2h1elFUSVUzZEEyaDlzM0lHYms2R0l4OXF3OUkwNjYyWENndC9PcFNWZWplOUR5LzdRdjNNeTJxazR0RExtK2NWSy9FMnFZL1VvVm5KM1NiZGozcVd4emNGOHVwL2g2V2xibkl4alRTcXNFM1IwZEtNeGIzNkJHcDhUVTlxTFljaUZsejBDOGhkLzhnUzJkYW5KTC9Zank1SDJEb1A1ZmRMdjUwQWtHNnQxSEh6QmdpVVN3cFJKbjh2bTQvMWV0aEExQmoycWFtM0psOTgrSGlIQkNFM3ZRcjU1VjBuM0hVb2pPLzl6MS92NWJ2N2Z5M3ZiNVg3MWJkL2ZWTytUdStFKzZabElTYzg0NGV0T0taM0t2dFhlaTJGdjBUNFZ2Q3MwSFdlbHhLaW5oSXl3UTRwNmJDNlJ5bXA0ZWEvUTBwUUZHMnltRVlNeFdSUUJDMTAwOE1oeHZPNEprRk1CNWJwOVROWVZ2RE4veEovdjFROHJWaW5MWENsdjE1S2VNM25MbTFJV3FHakZzemQ5SEFzVi9pVFQ0V0RONzB5R3Z3ZTlxLzZPMG9vRW9qV3N4RFEyL3BKR3NWZS84Zi9Dd0FBLy8raHFZVU1wYWNBQUE9PQ==
type: helm.sh/release.v1

Decoded json:

{
  "name": "dotnet",
  "info": {
    "first_deployed": "2023-02-14T23:49:12.655951052+01:00",
    "last_deployed": "2023-02-14T23:49:12.655951052+01:00",
    "deleted": "",
    "description": "Install complete",
    "status": "deployed",
    "notes": "\nYour .NET app is building! To view the build logs, run:\n\noc logs bc/dotnet --follow\n\nNote that your Deployment will report \"ErrImagePull\" and \"ImagePullBackOff\" until the build is complete. Once the build is complete, your image will be automatically rolled out."
  },
  "chart": {
    "metadata": {
      "name": "dotnet",
      "version": "0.0.1",
      "description": "A Helm chart to build and deploy .NET applications",
      "keywords": [
        "runtimes",
        "dotnet"
      ],
      "apiVersion": "v2",
      "annotations": {
        "chart_url": "https://github.com/openshift-helm-charts/charts/releases/download/redhat-dotnet-0.0.1/redhat-dotnet-0.0.1.tgz"
      }
    },
    "lock": null,
    "templates": [
      /* removed */
    ],
    "values": {
      "build": {
        "contextDir": null,
        "enabled": true,
        "env": null,
        "imageStreamTag": {
          "name": "dotnet:3.1",
          "namespace": "openshift",
          "useReleaseNamespace": false
        },
        "output": {
          "kind": "ImageStreamTag",
          "pushSecret": null
        },
        "pullSecret": null,
        "ref": "dotnetcore-3.1",
        "resources": null,
        "startupProject": "app",
        "uri": "https://github.com/redhat-developer/s2i-dotnetcore-ex"
      },
      "deploy": {
        "applicationProperties": {
          "enabled": false,
          "mountPath": "/deployments/config/",
          "properties": "## Properties go here"
        },
        "env": null,
        "envFrom": null,
        "extraContainers": null,
        "initContainers": null,
        "livenessProbe": {
          "tcpSocket": {
            "port": "http"
          }
        },
        "ports": [
          {
            "name": "http",
            "port": 8080,
            "protocol": "TCP",
            "targetPort": 8080
          }
        ],
        "readinessProbe": {
          "httpGet": {
            "path": "/",
            "port": "http"
          }
        },
        "replicas": 1,
        "resources": null,
        "route": {
          "enabled": true,
          "targetPort": "http",
          "tls": {
            "caCertificate": null,
            "certificate": null,
            "destinationCACertificate": null,
            "enabled": true,
            "insecureEdgeTerminationPolicy": "Redirect",
            "key": null,
            "termination": "edge"
          }
        },
        "serviceType": "ClusterIP",
        "volumeMounts": null,
        "volumes": null
      },
      "global": {
        "nameOverride": null
      },
      "image": {
        "name": null,
        "tag": "latest"
      }
    },
    "schema": "removed",
    "files": [
      {
        "name": "README.md",
        "data": "removed"
      }
    ]
  },
  "config": {
    "build": {
      "enabled": true,
      "imageStreamTag": {
        "name": "dotnet:3.1",
        "namespace": "openshift",
        "useReleaseNamespace": false
      },
      "output": {
        "kind": "ImageStreamTag"
      },
      "ref": "dotnetcore-3.1",
      "startupProject": "app",
      "uri": "https://github.com/redhat-developer/s2i-dotnetcore-ex"
    },
    "deploy": {
      "applicationProperties": {
        "enabled": false,
        "mountPath": "/deployments/config/",
        "properties": "## Properties go here"
      },
      "livenessProbe": {
        "tcpSocket": {
          "port": "http"
        }
      },
      "ports": [
        {
          "name": "http",
          "port": 8080,
          "protocol": "TCP",
          "targetPort": 8080
        }
      ],
      "readinessProbe": {
        "httpGet": {
          "path": "/",
          "port": "http"
        }
      },
      "replicas": 1,
      "route": {
        "enabled": true,
        "targetPort": "http",
        "tls": {
          "enabled": true,
          "insecureEdgeTerminationPolicy": "Redirect",
          "termination": "edge"
        }
      },
      "serviceType": "ClusterIP"
    },
    "image": {
      "tag": "latest"
    }
  },
  "manifest": "---\n# Source: dotnet/templates/service.yaml\napiVersion: v1\nkind: Service\nmetadata:\n  name: dotnet\n  labels:\n    helm.sh/chart: dotnet\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n    app.kubernetes.io/managed-by: Helm\n    app.openshift.io/runtime: dotnet\nspec:\n  type: ClusterIP\n  selector:\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n  ports:\n    - name: http\n      port: 8080\n      protocol: TCP\n      targetPort: 8080\n---\n# Source: dotnet/templates/deployment.yaml\napiVersion: apps/v1\nkind: Deployment\nmetadata:\n  name: dotnet\n  labels:\n    helm.sh/chart: dotnet\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n    app.kubernetes.io/managed-by: Helm\n    app.openshift.io/runtime: dotnet\n  annotations:\n    image.openshift.io/triggers: |-\n      [\n        {\n          \"from\":{\n            \"kind\":\"ImageStreamTag\",\n            \"name\":\"dotnet:latest\"\n          },\n          \"fieldPath\":\"spec.template.spec.containers[0].image\"\n        }\n      ]\nspec:\n  replicas: 1\n  selector:\n    matchLabels:\n      app.kubernetes.io/name: dotnet\n      app.kubernetes.io/instance: dotnet\n  template:\n    metadata:\n      labels:\n        helm.sh/chart: dotnet\n        app.kubernetes.io/name: dotnet\n        app.kubernetes.io/instance: dotnet\n        app.kubernetes.io/managed-by: Helm\n        app.openshift.io/runtime: dotnet\n    spec:\n      containers:\n        - name: web\n          image: dotnet:latest\n          ports:\n            - name: http\n              containerPort: 8080\n              protocol: TCP\n          livenessProbe:\n            tcpSocket:\n              port: http\n          readinessProbe:\n            httpGet:\n              path: /\n              port: http\n          volumeMounts:\n      volumes:\n---\n# Source: dotnet/templates/buildconfig.yaml\napiVersion: build.openshift.io/v1\nkind: BuildConfig\nmetadata:\n  name: dotnet\n  labels:\n    helm.sh/chart: dotnet\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n    app.kubernetes.io/managed-by: Helm\n    app.openshift.io/runtime: dotnet\nspec:\n  output:\n    to:\n      kind: ImageStreamTag\n      name: dotnet:latest\n  source:\n    type: Git\n    git:\n      uri: https://github.com/redhat-developer/s2i-dotnetcore-ex\n      ref: dotnetcore-3.1\n  strategy:\n    type: Source\n    sourceStrategy:\n      from:\n        kind: ImageStreamTag\n        name: dotnet:3.1\n        namespace: openshift\n      env:\n        - name: \"DOTNET_STARTUP_PROJECT\"\n          value: \"app\"\n  triggers:\n    - type: ConfigChange\n---\n# Source: dotnet/templates/imagestream.yaml\napiVersion: image.openshift.io/v1\nkind: ImageStream\nmetadata:\n  name: dotnet\n  labels:\n    helm.sh/chart: dotnet\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n    app.kubernetes.io/managed-by: Helm\n    app.openshift.io/runtime: dotnet\nspec:\n  lookupPolicy:\n    local: true\n---\n# Source: dotnet/templates/route.yaml\napiVersion: route.openshift.io/v1\nkind: Route\nmetadata:\n  name: dotnet\n  labels:\n    helm.sh/chart: dotnet\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n    app.kubernetes.io/managed-by: Helm\n    app.openshift.io/runtime: dotnet\nspec:\n  to:\n    kind: Service\n    name: dotnet\n  port:\n    targetPort: http\n  tls:\n    termination: edge\n    insecureEdgeTerminationPolicy: Redirect\n",
  "version": 1
}

Currently, we have this validation  https://github.com/openshift/installer/blob/master/pkg/asset/agent/installconfig_test.go#L103 which checks if the platform is none then the number of control planes should be 1 and workers should be zero.

We need another validation to check if the number of control planes is 1 and workers are zero, the in the install-config.yaml the platform can only be set as none and in agent-cluster-install.yaml, the platformType should only be set as none. If we try to do SNO (i.e. control planes is 1 and workers are zero)  with e.g. platform: baremetal then assisted will reject it, so we should catch it as early as possible

This bug is a backport clone of [Bugzilla Bug 2073220](https://bugzilla.redhat.com/show_bug.cgi?id=2073220). The following is the description of the original bug:

Description of problem:

https://docs.openshift.com/container-platform/4.10/security/audit-log-policy-config.html#about-audit-log-profiles_audit-log-policy-config

Version-Release number of selected component (if applicable): 4.*

How reproducible: always

Steps to Reproduce:
1. Set audit profile to WriteRequestBodies
2. Wait for api server rollout to complete
3. tail -f /var/log/kube-apiserver/audit.log | grep routes/status

Actual results:

Write events to routes/status are recorded at the RequestResponse level, which often includes keys and certificates.

Expected results:

Events involving routes should always be recorded at the Metadata level, per the documentation at https://docs.openshift.com/container-platform/4.10/security/audit-log-policy-config.html#about-audit-log-profiles_audit-log-policy-config

Additional info:

This is a clone of issue OCPBUGS-3458. The following is the description of the original issue:

Description of problem:

Since way back in 4.8, we've had a banner with To request update recommendations, configure a channel that supports your version when ClusterVersion has RetrievedUpdates=False . But that's only one of several reasons we could be RetrievedUpdates=False. Can we pivot to passing through the ClusterVersion condition message?

Version-Release number of selected component (if applicable):

4.8 and later.

How reproducible:

100%

Steps to Reproduce:

1. Launch a cluster-bot cluster like 4.11.12.
2. Set a channel with oc adm upgrade channel stable-4.11.
3. Scale down the CVO with oc scale --replicas 0 -n openshift-cluster-version deployments/cluster-version-operator.
4. Patch in a RetrievedUpdates condition with:

$ CONDITIONS="$(oc get -o json clusterversion version | jq -c '[.status.conditions[] | if .type == "RetrievedUpdates" then .status = "False" | .message = "Testing" else . end]')"
$ oc patch --subresource status clusterversion version --type json -p "[{\"op\": \"add\", \"path\": \"/status/conditions\", \"value\": ${CONDITIONS}}]"

5. View the admin console at /settings/cluster.

Actual results:

Advice about configuring the channel (but it's already configured).

Expected results:

See the message you patched into the RetrievedUpdates condition.

Grafana has been removed in 4.11 and we can safely remove any logic in CMO that deals with Grafana (except dashboards since they are used by OCP console).

Another point to clarify is to communicate to ProdSec and ART that Grafana isn't part of OCP anymore.

Description of problem:

The current version of openshift/router vendors Kubernetes 1.24 packages.  OpenShift 4.12 is based on Kubernetes 1.25.  

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. Check https://github.com/openshift/router/blob/release-4.12/go.mod 

Actual results:

Kubernetes packages (k8s.io/api, k8s.io/apimachinery, and k8s.io/client-go) are at version v0.24.0.

Expected results:

Kubernetes packages are at version v0.25.0 or later.

Additional info:

Using old Kubernetes API and client packages brings risk of API compatibility issues.

Description of problem:

In ZTP input, we can put AdditionalNTPSources in order to have assisted-service mix the provided sources with those the nodes receive from DHCP.

AdditionalNTPSources in AgentConfig needs to be generated in InfraEnv in order for it to be applied in the installation

Version-Release number of selected component (if applicable):

4.11 MVP patch 2

How reproducible:

100%

Steps to Reproduce:

1. Create AgentConfig with AdditionalNTPSources like for example "0.fedora.pool.ntp.org"
2. Generate ISO
3. Deploy
4. Check the resulting cluster nodes /etc/chrony.conf

Actual results:

chrony.conf only contains DHCP provided NTP sources (if not static network deplooyment)

Expected results:

/etc/chrony.conf in all the cluster nodes should have at least a server listed:
server 0.fedora.pool.ntp.org iburst

Additional info:

 

This is a clone of issue OCPBUGS-3195. The following is the description of the original issue:

Description of problem:

the service ca controller start func seems to return that error as soon as its context is cancelled (which seems to happen the moment the first signal is received): https://github.com/openshift/service-ca-operator/blob/42088528ef8a6a4b8c99b0f558246b8025584056/pkg/controller/starter.go#L24

that apparently triggers os.Exit(1) immediately https://github.com/openshift/service-ca-operator/blob/42088528ef8a6a4b8c99b0f55824[…]om/openshift/library-go/pkg/controller/controllercmd/builder.go

the lock release doesn't happen until the periodic renew tick breaks out https://github.com/openshift/service-ca-operator/blob/42088528ef8a6a4b8c99b0f55824[…]/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go

seems unlikely that you'd reach the call to le.release() before the call to os.Exit(1) in the other goroutine

Version-Release number of selected component (if applicable):

4.13.0

How reproducible:

~always

Steps to Reproduce:

1. oc delete -n openshift-service-ca pod <service-ca pod>

Actual results:

the old pod logs show:

W1103 09:59:14.370594       1 builder.go:106] graceful termination failed, controllers failed with error: stopped

and when a new pod comes up to replace it, it has to wait for a while before acquiring the leader lock

I1103 16:46:00.166173       1 leaderelection.go:248] attempting to acquire leader lease openshift-service-ca/service-ca-controller-lock...
 .... waiting ....
I1103 16:48:30.004187       1 leaderelection.go:258] successfully acquired lease openshift-service-ca/service-ca-controller-lock

Expected results:

new pod can acquire the leader lease without waiting for the old pod's lease to expire

Additional info:

 

This is a clone of issue OCPBUGS-4207. The following is the description of the original issue:

Description of problem:


We added a line to increase debugging verbosity to aid in debugging WRKLDS-540

Version-Release number of selected component (if applicable):

13

How reproducible:

very

Steps to Reproduce:

1.just a revert
2.
3.

Actual results:

Extra debugging lines are present in the openshift-config-operator pod logs

Expected results:

Extra debugging lines no longer in the openshift-config-operator pod logs

Additional info:


This is a clone of issue OCPBUGS-2891. The following is the description of the original issue:

Deprovisioning can fail with the error:

level=warning msg=unrecognized elastic load balancing resource type listener arn=arn:aws:elasticloadbalancing:us-west-2:460538899914:listener/net/a9ac9f1b3019c4d1299e7ededc92b42b/a6f0655da877ddd4/45e05ee69d99bab0

 

Further background is available in this write up:

https://docs.google.com/document/d/1TsTqIVwHDmjuDjG7v06w_5AAbXSisaDX-UfUI9-GVJo/edit#

 

Incident channel:

incident-aws-leaking-tags-for-deleted-resources

 

Name: Routing
Description: Please change the "Routing" component to be a subcomponent "router" of the "Networking" component.

Component: change to "Networking".
Subcomponent: change to "router".

Existing fields (default assignee, default QA contact, default CC email list, etc.) should remain the same as they currently are.
Default Assignee: aos-network-edge-staff@bot.bugzilla.redhat.com
Default QA Contact: hongli@redhat.com
Default CC List: aos-network-edge-staff@bot.bugzilla.redhat.com
Additional Notes:
I filled in "Default CC email list" because the form validation would not permit me to omit it. However, it can be left empty in Bugzilla (it is currently empty).

If possible, we would like this change to be done prior to the Bugzilla-to-Jira migration to avoid the need to make the change after the migration.

With CSISnapshot capability is disabled, all CSI driver operators are Degraded. For example AWS EBS CSI driver operator during installation:

18:12:16.895: Some cluster operators are not ready: storage (Degraded=True AWSEBSCSIDriverOperatorCR_AWSEBSDriverStaticResourcesController_SyncError: AWSEBSCSIDriverOperatorCRDegraded: AWSEBSDriverStaticResourcesControllerDegraded: "volumesnapshotclass.yaml" (string): the server could not find the requested resource
AWSEBSCSIDriverOperatorCRDegraded: AWSEBSDriverStaticResourcesControllerDegraded: )
Ginkgo exit error 1: exit with code 1}

Version-Release number of selected component (if applicable):
4.12.nightly

The reason is that cluster-csi-snapshot-controller-operator does not create VolumeSnapshotClass CRD, which AWS EBS CSI driver operator expects to exist.

CSI driver operators must skip VolumeSnapshotClass creation if the CRD does not exist.

The application dropdown menu uses a custom component with a configuration to favorite applications, like the Project selection menu favorites projects, but its UX is inconsistent in the way it looks and behaves.

 

The Project selection UI element uses the PatternFly Menu component.  It would be better to have the Application dropdown menu looks and behavior be consistent with the PatternFly Menu component.

 

 

 

 

 

Description of problem:
The console crashes when it used with a user settings ConfigMap that is created with a 4.13+ console. This version saves "null" for the key "console.pinnedResources" which doesn't happen before and the old console version could not handle this well.

Version-Release number of selected component (if applicable):
4.8-4.12

How reproducible:
Always, but only in the edge case that someone used a newer console first and then downgraded.

This can happen only by manually applying the user settings ConfigMap or when downgrading a cluster.

Steps to Reproduce:
Open the user-settings ConfigMap and set "console.pinedResources" to "null" (with quotes as all ConfigMap values needs to be strings)

Or run this patch command:

oc patch -n openshift-console-user-settings configmaps user-settings-kubeadmin --type=merge --patch '{"data":{"console.pinnedResources":"null"}}'

Open console...

Actual results:
Console crashes

Expected results:
Console should not crash

This is a clone of issue OCPBUGS-3476. The following is the description of the original issue:

Description of problem:

When we detect a refs/heads/branchname we should show the label as what we have now:

- Branch: branchname

And when we detect a refs/tags/tagname we should instead show the label as:

- Tag: tagname

I haven't implemented this in cli but there is an old issue for that here openshift-pipelines/pipelines-as-code#181

Version-Release number of selected component (if applicable):

4.11.z

How reproducible:

 

Steps to Reproduce:

1. Create a repository
2. Trigger the pipelineruns by push or pull request event on the github  

Actual results:

We do not show tag name even is tag is present instead of branch

Expected results:

We should show tag if tag is detected and branch if branch is detedcted.

Additional info:

https://github.com/openshift/console/pull/12247#issuecomment-1306879310

There is capacity limit on egressIP for different cloud provider, for example, GCP, the limit is 10.

If the number of egressIP added to hostsubnet exceeds the capability limit, it is expected some logging message is emitted to event log, that can be seen through "oc get event"

 

On a GCP with SDN plugin, configure egressCIDRs on one worker node, configured 12 netnamespaces, each has 1 egressIP configured, the total number of egressIP for the hostsubnet has exceeded its capacity limit of 10.   No event log was seen to indicate that the number of egressIP for the hostsubnet has exceeded the limit.

$ oc get clusterversion
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.0-0.nightly-2022-08-02-014045   True        False         160m    Cluster version is 4.11.0-0.nightly-2022-08-02-014045

 

See attachment for more details.

 

Description of problem:

OVNKubernetesControllerDisconnectedSouthboundDatabase alert seems to fire in the e2e-aws-ovn-serial CI job. Note that something funny happens in the job itself, which is that a set of ovnkube-node pods get created and then deleted and then get recreated again and test runs. But the alert gets fired for the first set of pods that got deleted. From the initial screening of artifacts alone its not clear what happened to the old pods. This needs investigation

Version-Release number of selected component (if applicable):

4.12 OCP

How reproducible:

Seems like always

Steps to Reproduce:

1.https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/27043/pull-ci-openshift-origin-master-e2e-aws-ovn-serial/1568166237639282688
2. https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/27043/pull-ci-openshift-origin-master-e2e-aws-ovn-serial/1567913444936519680

Actual results:

Alert is fired

Expected results:

Alert shouldn't be fired and this is expected in the serial job then we need to silence that alert for that job, make it flaky and not fail hard if that alert fires.

Additional info:

 

This is a clone of issue OCPBUGS-2551. The following is the description of the original issue:

Description of problem:

When normal user select "All namespaces" by using the radio button "Show operands in", The ""Error Loading" error will be shown 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-18-192348, 4.11

How reproducible:

Always

Steps to Reproduce:

1. Install operator "Red Hat Intergration-Camel K" on All namespace
2. Login console by using normal user
3. Navigate to "All instances" Tab for the opertor
4. Check the radio button "All namespaces" is being selected
5. Check the page 

Actual results:

The Error Loading info will be shown on page

Expected results:

The error should not shown

Additional info:

 

This is a clone of issue OCPBUGS-5151. The following is the description of the original issue:

Description of problem:

Cx is not able to install new cluster OCP BM IPI. During the bootstrapping the provisioning interfaces from master node not getting ipv4 dhcp ip address from bootstrap dhcp server on OCP IPI BareMetal install 

Please refer to following BUG --> https://issues.redhat.com/browse/OCPBUGS-872  The problem was solved by applying rd.net.timeout.carrier=30 to the kernel parameters of compute nodes via cluster-baremetal operator. The fix also need to be apply to the control-plane. 

  ref:// https://github.com/openshift/cluster-baremetal-operator/pull/286/files

 

Version-Release number of selected component (if applicable):

 

How reproducible:

Perform OCP 4.10.16 IPI BareMetal install.

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

Customer should be able to install the cluster without any issue.

Additional info:

 

This is a clone of issue OCPBUGS-3228. The following is the description of the original issue:

While starting a Pipelinerun using UI, and in the process of providing the values on "Start Pipeline" , the IBM Power Customer (Deepak Shetty from IBM) has tried creating credentials under "Advanced options" with "Image Registry Credentials" (Authenticaion type). When the IBM Customer verified the credentials from  Secrets tab (in Workloads) , the secret was found in broken state. Screenshot of the broken secret is attached. 

The issue has been observed on OCP4.8, OCP4.9 and OCP4.10.

Description of problem:

a freshly installed 4.12 cluster should have stable-4.12 channel by default

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-02-154321

How reproducible:

100%

Steps to Reproduce:

install 4.12 cluster

Actual results:

oc get clusterversion/version -ojson | jq .spec.channel
"stable-4.11"

Expected results:

oc get clusterversion/version -ojson | jq .spec.channel
"stable-4.12"

Additional info:

 

Because the agent ISO is ephemeral, it is probably safe to allow a user to log in to it with a password. If the network configuration is broken, a user may have no other way to debug it other than to log in through the console, which is currently not possible.

The best password to set would be the kubeadmin password used for the OpenShift GUI, since we'll have generated that already.

We must take care to test that this does not result in the installed nodes on disk allowing login with a password.

This is a clone of issue OCPBUGS-3164. The following is the description of the original issue:

During first bootstrap boot we need crio and kubelet on the disk, so we start release-image-pivot systemd task. However, its not blocking bootkube, so these two run in parallel.

release-image-pivot restarts the node to apply new OS image, which may leave bootkube in an inconsistent state. This task should run before bootkube

Description of problem:

When creating a pod with an additional network that contains a `spec.config.ipam.exclude` range, any address within the excluded range is still iterated while searching for a suitable IP candidate. As a result, pod creation times out when large exclude ranges are used.

Version-Release number of selected component (if applicable):

 

How reproducible:

with big exclude ranges, 100%

Steps to Reproduce:

1. create network-attachment-definition with a large range:

$ cat <<EOF| oc apply -f -       
apiVersion: k8s.cni.cncf.io/v1                                            
kind: NetworkAttachmentDefinition
metadata:
  name: nad-w-excludes
spec:
  config: |-
    {
      "cniVersion": "0.3.1",
      "name": "macvlan-net",
      "type": "macvlan",
      "master": "ens3",
      "mode": "bridge",
      "ipam": {
         "type": "whereabouts",
         "range": "fd43:01f1:3daa:0baa::/64",
         "exclude": [ "fd43:01f1:3daa:0baa::/100" ],
         "log_file": "/tmp/whereabouts.log",
         "log_level" : "debug"
      }
    }
EOF
2. create a pod with the network attached:

$ cat <<EOF|oc apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: pod-with-exclude-range
  annotations:
    k8s.v1.cni.cncf.io/networks: nad-w-excludes
spec:
  containers:
  - name: pod-1
    image: openshift/hello-openshift
EOF

3. check pod status, event log and whereabouts logs after a while: 

$ oc get pods
NAME                        READY   STATUS              RESTARTS   AGE
pod-with-exclude-range      0/1     ContainerCreating   0          2m23s

$ oc get events
<...>
6m39s       Normal    Scheduled                                    pod/pod-with-exclude-range                   Successfully assigned default/pod-with-exclude-range to <worker-node>
6m37s       Normal    AddedInterface                               pod/pod-with-exclude-range                   Add eth0 [10.129.2.49/23] from openshift-sdn
2m39s       Warning   FailedCreatePodSandBox                       pod/pod-with-exclude-range                   Failed to create pod sandbox: rpc error: code = DeadlineExceeded desc = context deadline exceeded

$ oc debug node/<worker-node> - tail /host/tmp/whereabouts.log
Starting pod/<worker-node>-debug ...
To use host binaries, run `chroot /host`
2022-10-27T14:14:50Z [debug] Finished leader election
2022-10-27T14:14:50Z [debug] IPManagement: {fd43:1f1:3daa:baa::1 ffffffffffffffff0000000000000000} , <nil>
2022-10-27T14:14:59Z [debug] Used defaults from parsed flat file config @ /etc/kubernetes/cni/net.d/whereabouts.d/whereabouts.conf
2022-10-27T14:14:59Z [debug] ADD - IPAM configuration successfully read: {Name:macvlan-net Type:whereabouts Routes:[] Datastore:kubernetes Addresses:[] OmitRanges:[fd43:01f1:3daa:0baa::/80] DNS: {Nameservers:[] Domain: Search:[] Options:[]} Range:fd43:1f1:3daa:baa::/64 RangeStart:fd43:1f1:3daa:baa:: RangeEnd:<nil> GatewayStr: EtcdHost: EtcdUsername: EtcdPassword:********* EtcdKeyFile: EtcdCertFile: EtcdCACertFile: LeaderLeaseDuration:1500 LeaderRenewDeadline:1000 LeaderRetryPeriod:500 LogFile:/tmp/whereabouts.log LogLevel:debug OverlappingRanges:true SleepForRace:0 Gateway:<nil> Kubernetes: {KubeConfigPath:/etc/kubernetes/cni/net.d/whereabouts.d/whereabouts.kubeconfig K8sAPIRoot:} ConfigurationPath:PodName:pod-with-exclude-range PodNamespace:default} 
2022-10-27T14:14:59Z [debug] Beginning IPAM for ContainerID: f4ffd0e07d6c1a2b6ffb0fa29910c795258792bb1a1710ff66f6b48fab37af82
2022-10-27T14:14:59Z [debug] Started leader election
2022-10-27T14:14:59Z [debug] OnStartedLeading() called
2022-10-27T14:14:59Z [debug] Elected as leader, do processing
2022-10-27T14:14:59Z [debug] IPManagement - mode: 0 / containerID:f4ffd0e07d6c1a2b6ffb0fa29910c795258792bb1a1710ff66f6b48fab37af82 / podRef: default/pod-with-exclude-range
2022-10-27T14:14:59Z [debug] IterateForAssignment input >> ip: fd43:1f1:3daa:baa:: | ipnet: {fd43:1f1:3daa:baa:: ffffffffffffffff0000000000000000} | first IP: fd43:1f1:3daa:baa::1 | last IP: fd43:1f1:3daa:baa:ffff:ffff:ffff:ffff

Actual results:

Failed to create pod sandbox: rpc error: code = DeadlineExceeded desc = context deadline exceeded

Expected results:

additional network gets attached to the pod

Additional info:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description of problem:

Large OpenShift Container Platform 4.10.24 - Cluster is failing to update router-certs secret in openshift-config-managed namespace as the given secret is too big.

2022-09-01T06:24:15.157333294Z 2022-09-01T06:24:15.157Z ERROR operator.init.controller.certificate_publisher_controller controller/controller.go:266  Reconciler error  {"name": "foo-bar", "namespace": "openshift-ingress-operator", "error": "failed to ensure global secret: failed to update published router certificates secret: Secret \"router-certs\" is invalid: data: Too long: must have at most 1048576 bytes"}

The OpenShift Container Platform 4 - Cluster has 180 IngressController configured with endpointPublishingStrategy set to private.

Now the default certificate needs to be replaced but is not properly replicated to openshift-authentication namespace and potentially other location because of the problem mentioned (since the required secret can not be updated)

Version-Release number of selected component (if applicable):

OpenShift Container Platform 4.10.24

How reproducible:

Always

Steps to Reproduce:

1. Install OpenShift Container Platform 4.10
2. Create 180 IngressController with specific certificates
3. Check openshift-ingress-operator logs to see how it fails to update/create the necessary secret in openshift-config-managed

Actual results:

2022-09-01T06:24:15.157333294Z 2022-09-01T06:24:15.157Z ERROR operator.init.controller.certificate_publisher_controller controller/controller.go:266  Reconciler error  {"name": "foo-bar", "namespace": "openshift-ingress-operator", "error": "failed to ensure global secret: failed to update published router certificates secret: Secret \"router-certs\" is invalid: data: Too long: must have at most 1048576 bytes"}

Expected results:

No matter how many IngressController is created, secret management taken care by Operators need to work, even if data exceed 1 MB size limitation. In that case an approach needs to exist to split data into multiple secrets or handle it otherwise.

Additional info:

 

For the disconnected installation , we should not be able to provision machines successfully with publicIP:true , this has been the behavior earlier till -
4.11 and around 17th Aug nightly released 4.12 , but it has started allowing creation of machines with publicIP:true set in machineset

Issue reproduced on - Cluster version - 4.12.0-0.nightly-2022-08-23-223922

It is always reproducible .

Steps :
Create machineset using yaml with 
{"spec":{"providerSpec":{"value":{"publicIP": true}}}}

Machineset created successfully and machine provisioned successfully .

This seems to be regression bug refer - https://bugzilla.redhat.com/show_bug.cgi?id=1889620

Here is the must gather log - https://drive.google.com/file/d/1UXjiqAx7obISTxkmBsSBuo44ciz9HD1F/view?usp=sharing

Here is the test successfully ran for 4.11 , for exactly same profile and machine creation failed with InvalidConfiguration Error- https://mastern-jenkins-csb-openshift-qe.apps.ocp-c1.prod.psi.redhat.com/job/ocp-common/job/Runner/575822/console

We can confirm disconnected cluster using below  there would be lot of mirrors used in those - 

oc get ImageContentSourcePolicy image-policy-aosqe -o yaml 

apiVersion: operator.openshift.io/v1alpha1
kind: ImageContentSourcePolicy
metadata:
  creationTimestamp: "2022-08-24T09:08:47Z"
  generation: 1
  name: image-policy-aosqe
  resourceVersion: "34648"
  uid: 20e45d6d-e081-435d-b6bb-16c4ca21c9d6
spec:
  repositoryDigestMirrors:
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/olmqe
    source: quay.io/olmqe
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/openshifttest
    source: quay.io/openshifttest
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/openshift-qe-optional-operators
    source: quay.io/openshift-qe-optional-operators
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: registry.redhat.io
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: registry.stage.redhat.io
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: brew.registry.redhat.io

 

 

Description of problem:

catsrc is not ready due to "compute digest: compute hash: write tar: open /tmp/cache/cache: permission denied"

Version-Release number of selected component (if applicable):

zhaoxia@xzha-mac test % ../bin/opm version  
Version: version.Version{OpmVersion:"b94e073b5", GitCommit:"b94e073b5187ecaa687c322beccf76f1d1f26d54", BuildDate:"2022-08-29T06:30:05Z", GoOs:"darwin", GoArch:"amd64"}
zhaoxia@xzha-mac test % oc exec catalog-operator-79d885b755-6cnbp  -- olm --version
OLM version: 0.19.0
git commit: dfa7f0e70578432117e63867706630cda5366fb7

How reproducible:

always

Steps to Reproduce:

1. generate index image
zhaoxia@xzha-mac test % mkdir catalog
zhaoxia@xzha-mac test % ../bin/opm generate dockerfile catalog
zhaoxia@xzha-mac test % cat catalog.Dockerfile 
# The base image is expected to contain
# /bin/opm (with a serve subcommand) and /bin/grpc_health_probe
FROM quay.io/operator-framework/opm:latest


# Configure the entrypoint and command
ENTRYPOINT ["/bin/opm"]
CMD ["serve", "/configs", "--cache-dir=/tmp/cache"]


# Copy declarative config root into image at /configs and pre-populate serve cache
ADD catalog /configs
RUN ["/bin/opm", "serve", "/configs", "--cache-dir=/tmp/cache", "--cache-only"]


# Set DC-specific label for the location of the DC root directory
# in the image
LABEL operators.operatorframework.io.index.configs.v1=/configs

zhaoxia@xzha-mac test % docker build . -f catalog.Dockerfile -t quay.io/olmqe/nginxolm-operator-index:2726 
zhaoxia@xzha-mac test % docker push quay.io/olmqe/nginxolm-operator-index:2726

2. create catsrc
zhaoxia@xzha-mac test % cat catsrc.yaml 
apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: test-index
  namespace: test-1
spec:
  displayName: Test
  publisher: OLM-QE
  sourceType: grpc
  image: quay.io/olmqe/nginxolm-operator-index:2726
  updateStrategy:
    registryPoll:
      interval: 10m

oc new-project test-1
oc apply -f catsrc.yaml 
 3. check pod status
zhaoxia@xzha-mac test % oc get pod
NAME               READY   STATUS             RESTARTS        AGE
test-index-hbqlv   0/1     Error              8 (5m13s ago)   16m
test-index-l6mzq   0/1     CrashLoopBackOff   10 (59s ago)    27m

zhaoxia@xzha-mac test % oc get pod test-index-hbqlv -o yaml
apiVersion: v1
kind: Pod
metadata:
  annotations:
    cluster-autoscaler.kubernetes.io/safe-to-evict: "true"
    k8s.v1.cni.cncf.io/network-status: |-
      [{
          "name": "openshift-sdn",
          "interface": "eth0",
          "ips": [
              "10.131.0.84"
          ],
          "default": true,
          "dns": {}
      }]
    k8s.v1.cni.cncf.io/networks-status: |-
      [{
          "name": "openshift-sdn",
          "interface": "eth0",
          "ips": [
              "10.131.0.84"
          ],
          "default": true,
          "dns": {}
      }]
    kubectl.kubernetes.io/last-applied-configuration: |
      {"apiVersion":"operators.coreos.com/v1alpha1","kind":"CatalogSource","metadata":{"annotations":{},"name":"test-index","namespace":"test-1"},"spec":{"displayName":"Test","image":"quay.io/olmqe/nginxolm-operator-index:2726","publisher":"OLM-QE","sourceType":"grpc","updateStrategy":{"registryPoll":{"interval":"10m"}}}}
    openshift.io/scc: restricted-v2
    seccomp.security.alpha.kubernetes.io/pod: runtime/default
  creationTimestamp: "2022-08-29T06:57:55Z"
  generateName: test-index-
  labels:
    catalogsource.operators.coreos.com/update: test-index
    olm.catalogSource: ""
    olm.pod-spec-hash: 777849c67c
  name: test-index-hbqlv
  namespace: test-1
  ownerReferences:
  - apiVersion: operators.coreos.com/v1alpha1
    blockOwnerDeletion: false
    controller: false
    kind: CatalogSource
    name: test-index
    uid: 5ef60ce9-6ade-43e1-bae4-7d69f6c9d5e0
  resourceVersion: "218774"
  uid: 7606a54a-6a7d-4979-833a-97c2f87a88b8
spec:
  containers:
  - image: quay.io/olmqe/nginxolm-operator-index:2726
    imagePullPolicy: Always
    livenessProbe:
      exec:
        command:
        - grpc_health_probe
        - -addr=:50051
      failureThreshold: 3
      initialDelaySeconds: 10
      periodSeconds: 10
      successThreshold: 1
      timeoutSeconds: 5
    name: registry-server
    ports:
    - containerPort: 50051
      name: grpc
      protocol: TCP
    readinessProbe:
      exec:
        command:
        - grpc_health_probe
        - -addr=:50051
      failureThreshold: 3
      initialDelaySeconds: 5
      periodSeconds: 10
      successThreshold: 1
      timeoutSeconds: 5
    resources:
      requests:
        cpu: 10m
        memory: 50Mi
    securityContext:
      allowPrivilegeEscalation: false
      capabilities:
        drop:
        - ALL
      readOnlyRootFilesystem: false
      runAsNonRoot: true
      runAsUser: 1001130000
    startupProbe:
      exec:
        command:
        - grpc_health_probe
        - -addr=:50051
      failureThreshold: 15
      periodSeconds: 10
      successThreshold: 1
      timeoutSeconds: 1
    terminationMessagePath: /dev/termination-log
    terminationMessagePolicy: FallbackToLogsOnError
    volumeMounts:
    - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
      name: kube-api-access-bfzvh
      readOnly: true
  dnsPolicy: ClusterFirst
  enableServiceLinks: true
  imagePullSecrets:
  - name: test-index-dockercfg-wp8s4
  nodeName: qe-daily-412-0829-qf9lx-worker-1-djpwq
  nodeSelector:
    kubernetes.io/os: linux
  preemptionPolicy: PreemptLowerPriority
  priority: 0
  restartPolicy: Always
  schedulerName: default-scheduler
  securityContext:
    fsGroup: 1001130000
    seLinuxOptions:
      level: s0:c34,c4
    seccompProfile:
      type: RuntimeDefault
  serviceAccount: test-index
  serviceAccountName: test-index
  terminationGracePeriodSeconds: 30
  tolerations:
  - effect: NoExecute
    key: node.kubernetes.io/not-ready
    operator: Exists
    tolerationSeconds: 300
  - effect: NoExecute
    key: node.kubernetes.io/unreachable
    operator: Exists
    tolerationSeconds: 300
  - effect: NoSchedule
    key: node.kubernetes.io/memory-pressure
    operator: Exists
  volumes:
  - name: kube-api-access-bfzvh
    projected:
      defaultMode: 420
      sources:
      - serviceAccountToken:
          expirationSeconds: 3607
          path: token
      - configMap:
          items:
          - key: ca.crt
            path: ca.crt
          name: kube-root-ca.crt
      - downwardAPI:
          items:
          - fieldRef:
              apiVersion: v1
              fieldPath: metadata.namespace
            path: namespace
      - configMap:
          items:
          - key: service-ca.crt
            path: service-ca.crt
          name: openshift-service-ca.crt
status:
  conditions:
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    status: "True"
    type: Initialized
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    message: 'containers with unready status: [registry-server]'
    reason: ContainersNotReady
    status: "False"
    type: Ready
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    message: 'containers with unready status: [registry-server]'
    reason: ContainersNotReady
    status: "False"
    type: ContainersReady
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    status: "True"
    type: PodScheduled
  containerStatuses:
  - containerID: cri-o://54d7a5ba94c061fb86ad056ad964dbda2824c864c6fdcd2d7d5a7ada515bc70e
    image: quay.io/olmqe/nginxolm-operator-index:2726
    imageID: quay.io/olmqe/nginxolm-operator-index@sha256:d70f38fa773ea5030b5b80bfe34d9168aabff5039ead44b7f7e7cd76f8705eb1
    lastState:
      terminated:
        containerID: cri-o://54d7a5ba94c061fb86ad056ad964dbda2824c864c6fdcd2d7d5a7ada515bc70e
        exitCode: 1
        finishedAt: "2022-08-29T07:14:23Z"
        message: |+
          Error: compute digest: compute hash: write tar: open /tmp/cache/cache: permission denied
          Usage:
            opm serve <source_path> [flags]


          Flags:
                --cache-dir string         if set, sync and persist server cache directory
                --cache-only               sync the serve cache and exit without serving
                --debug                    enable debug logging
            -h, --help                     help for serve
            -p, --port string              port number to serve on (default "50051")
                --pprof-addr string        address of startup profiling endpoint (addr:port format)
            -t, --termination-log string   path to a container termination log file (default "/dev/termination-log")


          Global Flags:
                --skip-tls-verify   skip TLS certificate verification for container image registries while pulling bundles
                --use-http          use plain HTTP for container image registries while pulling bundles


        reason: Error
        startedAt: "2022-08-29T07:14:23Z"
    name: registry-server
    ready: false
    restartCount: 8
    started: false
    state:
      waiting:
        message: back-off 5m0s restarting failed container=registry-server pod=test-index-hbqlv_test-1(7606a54a-6a7d-4979-833a-97c2f87a88b8)
        reason: CrashLoopBackOff
  hostIP: 10.242.0.4
  phase: Running
  podIP: 10.131.0.84
  podIPs:
  - ip: 10.131.0.84
  qosClass: Burstable
  startTime: "2022-08-29T06:57:55Z" 

Actual results:

the status of pod for catsrc is not running

Expected results:

the status of pod for catsrc is running

Additional info:

When using project openshift-marketplace, the same error will be raised.

Error: compute digest: compute hash: write tar: open /tmp/cache/cache: permission denied

This is a clone of issue OCPBUGS-6049. The following is the description of the original issue:

Description of problem:

We show the UpdateInProgress component (the progress bars) when the cluster update status is Failing, UpdatingAndFailing, or Updating.  The inclusion of the Failing case results in a bug where the progress bars can display when an update is not occurring (see attached screenshot).  

Steps to Reproduce:

1.  Add the following overrides to ClusterVersion config (/k8s/cluster/config.openshift.io~v1~ClusterVersion/version)

spec:
  overrides:
    - group: apps
      kind: Deployment
      name: console-operator
      namespace: openshift-console-operator
      unmanaged: true    
    - group: rbac.authorization.k8s.io
      kind: ClusterRole
      name: console-operator
      namespace: ''
      unmanaged: true
2.  Wait for ClusterVersion changes to roll out.
3.  Visit /settings/cluster and note the progress bars are present and displaying 100% but the cluster is not updating

Actual results:

Progress bars are displaying when not updating.

Expected results:

Progress bars should not display when updating.

Description of problem:

The cluster-dns-operator does not reconcile the openshift-dns namespace, which has been exposed as an issue in 4.12 due to the requirement for the namespace to have pod-security labels.

If a cluster has been incrementally updated from a version less than or equal to 4.9, the openshift-dns namespace will most likely not contain the required pod-security labels since the namespace was statically created when the cluster was installed with old namespace configuration.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always if cluster originally installed with v4.9 or less

Steps to Reproduce:

1. Install v4.9
2. Upgrade to v4.12 (incrementally if required for upgrade path)
3. openshift-dns namespace will be missing pod-security labels

Actual results:

"oc get ns openshift-dns -o yaml" will show missing pod-security labels: 

apiVersion: v1
kind: Namespace
metadata:
  annotations:
    openshift.io/node-selector: ""
    openshift.io/sa.scc.mcs: s0:c15,c0
    openshift.io/sa.scc.supplemental-groups: 1000210000/10000
    openshift.io/sa.scc.uid-range: 1000210000/10000
  creationTimestamp: "2020-05-21T19:36:15Z"
  labels:
    kubernetes.io/metadata.name: openshift-dns
    olm.operatorgroup.uid/3d42c0c1-01cd-4c55-bf88-864f041c7e7a: ""
    openshift.io/cluster-monitoring: "true"
    openshift.io/run-level: "0"
  name: openshift-dns
  resourceVersion: "3127555382"
  uid: 0fb4571e-952f-4bea-bc45-461beec54369
spec:
  finalizers:
  - kubernetes

Expected results:

pod-security labels should exist:
 
 labels:
    kubernetes.io/metadata.name: openshift-dns
    olm.operatorgroup.uid/3d42c0c1-01cd-4c55-bf88-864f041c7e7a: ""
    openshift.io/cluster-monitoring: "true"
    openshift.io/run-level: "0"
    pod-security.kubernetes.io/audit: privileged
    pod-security.kubernetes.io/enforce: privileged
    pod-security.kubernetes.io/warn: privileged

Additional info:

Issue found in CI during upgrade

https://coreos.slack.com/archives/C03G7REB4JV/p1663676443155839 

Description of problem:

Bootstrap fail in SNO installation

Version-Release number of selected component (if applicable):

 

How reproducible:

always

Steps to Reproduce:

1. Test this in libvirt env. Agent-config and install-config in attached.
2. Use attached agent-config and install-config to create image
3. Install SNO:
virt-install --connect qemu:///system -n control-0 -r 33000 --vcpus 8 --cdrom ./agent.iso --disk pool=installer,size=120 --boot uefi,hd,cdrom --os-variant=rhel8.5 --network network=default,mac=52:54:00:aa:aa:aa --wait=-1 --check mac_in_use=off
4. There is following error in bootkube.service log:
-- Logs begin at Fri 2022-09-30 08:58:21 UTC, end at Fri 2022-09-30 09:19:40 UTC. --
Sep 30 09:00:51 test.metalkube.org systemd[1]: Starting Bootkube - bootstrap in place post reboot...
Sep 30 09:00:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Running bootkube bootstrap-in-place post reboot
Sep 30 09:00:52 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Waiting for api ...
Sep 30 09:00:57 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Waiting for api ...
Sep 30 09:01:02 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Waiting for api ...
Sep 30 09:01:07 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Waiting for api ...
Sep 30 09:01:12 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Waiting for api ...
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Approving csrs ...
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[3045]: error: error executing jsonpath "{.items[0].status.conditions[?(@.type==\"Ready\")].status}": Error executing template: array index out of bounds: index 0, length 0. Printing more information for debugging the template:
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[3045]:         template was:
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[3045]:                 {.items[0].status.conditions[?(@.type=="Ready")].status}
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[3045]:         object given to jsonpath engine was:
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[3045]:                 map[string]interface {}{"apiVersion":"v1", "items":[]interface {}{}, "kind":"List", "metadata":map[string]interface {}{"resourceVersion":""}}
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Approving csrs ...
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[3142]: error: error executing jsonpath "{.items[0].status.conditions[?(@.type==\"Ready\")].status}": Error executing template: array index out of bounds: index 0, length 0. Printing more information for debugging the template:
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[3142]:         template was:
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[3142]:                 {.items[0].status.conditions[?(@.type=="Ready")].status}
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[3142]:         object given to jsonpath engine was:
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[3142]:                 map[string]interface {}{"apiVersion":"v1", "items":[]interface {}{}, "kind":"List", "metadata":map[string]interface {}{"resourceVersion":""}}
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Approving csrs ...
Sep 30 09:02:21 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Approving csrs ...
Sep 30 09:02:52 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Approving csrs ...

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-4168. The following is the description of the original issue:

Description of problem:

Prometheus continuously restarts due to slow WAL replay

Version-Release number of selected component (if applicable):

openshift - 4.11.13

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-4190. The following is the description of the original issue:

Description of problem:

Two tests are perma failing in metal-ipi upgrade tests
[sig-imageregistry] Image registry remains available using new connections expand_more    39m27s
[sig-imageregistry] Image registry remains available using reused connections expand_more    39m27s

Version-Release number of selected component (if applicable):

4.12 / 4.13

How reproducible:

all ci runs

Steps to Reproduce:

1.
2.
3.

Actual results:

Nov 24 02:58:26.998: INFO: "[sig-imageregistry] Image registry remains available using reused connections": panic: runtime error: invalid memory address or nil pointer dereference

Expected results:

pass

Additional info:

 

Description of problem:

Each LB created for a Service type LoadBalancer results in 1 client rule and <# of public subnets> health rules being created.  The rules per SG quota in AWS is quite small; 60 by default, and 200 hard max.  OCP has about 40 rules OOTB. Assuming an HA cluster in 3 AZs, that is 4 rules per LB.  With default AWS quota, only ~5 LBs can be create and with the hard max of 200, only ~40 LBs can be created.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1.  Create Service type LoadBalancer and observe increase in master-sg and worker-sg rules sets
2.
3.

Actual results:

4 rules are created

Expected results:

1 rules is created when the client rule is a superset of the per-subnet health rules

Additional info:

This ~4x the number of Services of type LoadBalancer.  This is required for Hypershift.

AWS CPMS changes made here causes the single node clusters to fail installation
https://github.com/openshift/installer/pull/6172

 

Need to fix the issue by checking and not creating the CPMS manifest if the installation type is single node.

Description of problem:

When user selects a installed operator (for example, openshift elastic search) in operator hub and navigating to installed operator page from operator information page

with the help of "view it here" option, "404 Not found" information has wrongly shown/appeared although it navigates to the installed operator at the end.

 

Version-Release number of selected components (if applicable):
4.12.0-0.nightly-2022-08-15-150248
How reproducible:

 Always

 

Steps to Reproduce:

  1. Login to OCP web console.
  2. Install Operator, For example,OpenShift Elasticsearch Operator- production operators if missing.
  3. Go to the Operator hub and  search for OpenShift Elasticsearch Operator. (make sure Project filter sets to 'All projects')
  4. Click on OpenShift Elasticsearch Operator- production operators.
  5. Click on the link "View it here" from the installed operator section.
  6. View the behavior.

Actual results:

Wrong message "404: Not found" while the user selects an installed operator and navigates from ope