Back to index

4.12.21

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.59

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

Overview 

HyperShift came to life to serve multiple goals, some are main near-term, some are secondary that serve well long-term. 

Main Goals for hosted control planes (HyperShift)

  • Optimize OpenShift for Cost/footprint/ which improves our competitive stance against the *KSes
  • Establish separation of concerns which makes it more resilient for SRE to manage their workload clusters (be it security, configuration management, etc).
  • Simplify and enhance multi-cluster management experience especially since multi-cluster is becoming an industry need nowadays. 

Secondary Goals

HyperShift opens up doors to penetrate the market. HyperShift enables true hybrid (CP and Workers decoupled, mixed IaaS, mixed Arch,...). An architecture that opens up more options to target new opportunities in the cloud space. For more details on this one check: Hosted Control Planes (aka HyperShift) Strategy [Live Document]

 

Hosted Control Planes (HyperShift) Map 

To bring hosted control planes to our customers, we need the means to ship it. Today MCE is how HyperShift shipped, and installed so that customers can use it. There are two main customers for hosted-control-planes: 

 

  • Self-managed: In that case, Red Hat would provide hosted control planes as a service that is managed and SREed by the customer for their tenants (hence “self”-managed). In this management model, our external customers are the direct consumers of the multi-cluster control plane as a servie. Once MCE is installed, they can start to self-service dedicated control planes. 

 

  • Managed: This is OpenShift as a managed service, today we only “manage” the CP, and share the responsibility for other system components, more info here. To reduce management costs incurred by service delivery organizations which translates to operating profit (by reducing variable costs per control-plane), as well as to improve user experience, lower platform overhead (allow customers to focus mostly on writing applications and not concern themselves with infrastructure artifacts), and improve the cluster provisioning experience. HyperShift is shipped via MCE, and delivered to Red Hat managed SREs (same consumption route). However, for managed services, additional tooling needs to be refactored to support the new provisioning path. Furthermore, unlike self-managed where customers are free to bring their own observability stack, Red Hat managed SREs need to observe the managed fleet to ensure compliance with SLOs/SLIs/…

 

If you have noticed, MCE is the delivery mechanism for both management models. The difference between managed and self-managed is the consumer persona. For self-managed, it's the customer SRE for managed its the RH SRE

High-level Requirements

For us to ship HyperShift in the product (as hosted control planes) in either management model, there is a necessary readiness checklist that we need to satisfy. Below are the high-level requirements needed before GA: 

 

  • Hosted control planes fits well with our multi-cluster story (with MCE)
  • Hosted control planes APIs are stable for consumption  
  • Customers are not paying for control planes/infra components.  
  • Hosted control planes has an HA and a DR story
  • Hosted control planes is in parity with top-level add-on operators 
  • Hosted control planes reports metrics on usage/adoption
  • Hosted control planes is observable  
  • HyperShift as a backend to managed services is fully unblocked.

 

Please also have a look at our What are we missing in Core HyperShift for GA Readiness? doc. 

Hosted control planes fits well with our multi-cluster story

Multi-cluster is becoming an industry need today not because this is where trend is going but because it’s the only viable path today to solve for many of our customer’s use-cases. Below is some reasoning why multi-cluster is a NEED:

 

 

As a result, multi-cluster management is a defining category in the market where Red Hat plays a key role. Today Red Hat solves for multi-cluster via RHACM and MCE. The goal is to simplify fleet management complexity by providing a single pane of glass to observe, secure, police, govern, configure a fleet. I.e., the operand is no longer one cluster but a set, a fleet of clusters. 

HyperShift logically centralized architecture, as well as native separation of concerns and superior cluster lifecyle management experience, makes it a great fit as the foundation of our multi-cluster management story. 

Thus the following stories are important for HyperShift: 

  • When lifecycling OpenShift clusters (for any OpenShift form factor) on any of the supported providers from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to use a consistent UI so I can manage and operate (observe, govern,...) a fleet of clusters.
  • I want to specify HA constraints (e.g., deploy my clusters in different regions) while ensuring acceptable QoS (e.g., latency boundaries) to ensure/reduce any potential downtime for my workloads. 
  • When operating OpenShift clusters (for any OpenShift form factor) on any of the supported provider from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to backup any critical data so I am able to restore them in case of hosting service cluster (management cluster) failure. 

Refs:

Hosted control planes APIs are stable for consumption.

 

HyperShift is the core engine that will be used to provide hosted control-planes for consumption in managed and self-managed. 

 

Main user story:  When life cycling clusters as a cluster service consumer via HyperShift core APIs, I want to use a stable/backward compatible API that is less susceptible to future changes so I can provide availability guarantees. 

 

Ref: What are we missing in Core HyperShift for GA Readiness?

Customers are not paying for control planes/infra components. 

 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumptions

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

HyperShift - proposed cuts from data plane

HyperShift has an HA and a DR story

When operating OpenShift clusters (for any OpenShift form factor) from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin) I want to be able to migrate CPs from one hosting service cluster to another:

  • as means for disaster recovery in the case of total failure
  • so that scaling pressures on a management cluster can be mitigated or a management cluster can be decommissioned.

More information: 

 

Hosted control planes reports metrics on usage/adoption

To understand usage patterns and inform our decision making for the product. We need to be able to measure adoption and assess usage.

See Hosted Control Planes (aka HyperShift) Strategy [Live Document]

Hosted control plane is observable  

Whether it's managed or self-managed, it’s pertinent to report health metrics to be able to create meaningful Service Level Objectives (SLOs), alert of failure to meet our availability guarantees. This is especially important for our managed services path. 

HyperShift is in parity with top-level add-on operators

https://issues.redhat.com/browse/OCPPLAN-8901 

Unblock HyperShift as a backend to managed services

HyperShift for managed services is a strategic company goal as it improves usability, feature, and cost competitiveness against other managed solutions, and because managed services/consumption-based cloud services is where we see the market growing (customers are looking to delegate platform overhead). 

 

We should make sure our SD milestones are unblocked by the core team. 

 

Note 

This feature reflects HyperShift core readiness to be consumed. When all related EPICs and stories in this EPIC are complete HyperShift can be considered ready to be consumed in GA form. This does not describe a date but rather the readiness of core HyperShift to be consumed in GA form NOT the GA itself.

- GA date for self-managed will be factoring in other inputs such as adoption, customer interest/commitment, and other factors. 
- GA dates for ROSA-HyperShift are on track, tracked in milestones M1-7 (have a look at https://issues.redhat.com/browse/OCPPLAN-5771

Epic Goal*

The goal is to split client certificate trust chains from the global Hypershift root CA.

 
Why is this important? (mandatory)

This is important to:

  • assure a workload can be run on any kind of OCP flavor
  • reduce the blast radius in case of a sensitive material leak
  • separate trust to allow more granular control over client certificate authentication

 
Scenarios (mandatory) 

Provide details for user scenarios including actions to be performed, platform specifications, and user personas.  

  1. I would like to be able to run my workloads on any OpenShift-like platform.
    My workloads allow components to authenticate using client certificates based
    on a trust bundle that I am able to retrieve from the cluster.
  1. I don't want my users to have access to any CA bundle that would allow them
    to trust a random certificate from the cluster for client certificate authentication.

 
Dependencies (internal and external) (mandatory)

Hypershift team needs to provide us with code reviews and merge the changes we are to deliver

Contributing Teams(and contacts) (mandatory) 

  • Development - OpenShift Auth, Hypershift
  • Documentation -OpenShift Auth Docs team
  • QE - OpenShift Auth QE
  • PX - I have no idea what PX is
  • Others - others

Acceptance Criteria (optional)

The serviceaccount CA bundle automatically injected to all pods cannot be used to authenticate any client certificate generated by the control-plane.

Drawbacks or Risk (optional)

Risk: there is a throbbing time pressure as this should be delivered before first stable Hypershift release

Done - Checklist (mandatory)

  • CI Testing -  Basic e2e automationTests are merged and completing successfully
  • Documentation - Content development is complete.
  • QE - Test scenarios are written and executed successfully.
  • Technical Enablement - Slides are complete (if requested by PLM)
  • Engineering Stories Merged
  • All associated work items with the Epic are closed
  • Epic status should be “Release Pending” 
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

Feature Overview  

Much like core OpenShift operators, a standardized flow exists for OLM-managed operators to interact with the cluster in a specific way to leverage AWS STS authorization when using AWS APIs as opposed to insecure static, long-lived credentials. OLM-managed operators can implement integration with the CloudCredentialOperator in well-defined way to support this flow.

Goals:

Enable customers to easily leverage OpenShift's capabilities around AWS STS with layered products, for increased security posture. Enable OLM-managed operators to implement support for this in well-defined pattern.

Requirements:

  • CCO gets a new mode in which it can reconcile STS credential request for OLM-managed operators
  • A standardized flow is leveraged to guide users in discovering and preparing their AWS IAM policies and roles with permissions that are required for OLM-managed operators 
  • A standardized flow is defined in which users can configure OLM-managed operators to leverage AWS STS
  • An example operator is used to demonstrate the end2end functionality
  • Clear instructions and documentation for operator development teams to implement the required interaction with the CloudCredentialOperator to support this flow

Use Cases:

See Operators & STS slide deck.

 

Out of Scope:

  • handling OLM-managed operator updates in which AWS IAM permission requirements might change from one version to another (which requires user awareness and intervention)

 

Background:

The CloudCredentialsOperator already provides a powerful API for OpenShift's cluster core operator to request credentials and acquire them via short-lived tokens. This capability should be expanded to OLM-managed operators, specifically to Red Hat layered products that interact with AWS APIs. The process today is cumbersome to none-existent based on the operator in question and seen as an adoption blocker of OpenShift on AWS.

 

Customer Considerations

This is particularly important for ROSA customers. Customers are expected to be asked to pre-create the required IAM roles outside of OpenShift, which is deemed acceptable.

Documentation Considerations

  • Internal documentation needs to exists to guide Red Hat operator developer teams on the requirements and proposed implementation of integration with CCO and the proposed flow
  • External documentation needs to exist to guide users on:
    • how to become aware that the cluster is in STS mode
    • how to become aware of operators that support STS and the proposed CCO flow
    • how to become aware of the IAM permissions requirements of these operators
    • how to configure an operator in the proposed flow to interact with CCO

Interoperability Considerations

  • this needs to work with ROSA
  • this needs to work with self-managed OCP on AWS

Market Problem

This Section: High-Level description of the Market Problem ie: Executive Summary

  • As a customer of OpenShift layered products, I need to be able to fluidly, reliably and consistently install and use OpenShift layered product Kubernetes Operators into my ROSA STS clusters, while keeping a STS workflow throughout.
  •  
  • As a customer of OpenShift on the big cloud providers, overall I expect OpenShift as a platform to function equally well with tokenized cloud auth as it does with "mint-mode" IAM credentials. I expect the same from the Kubernetes Operators under the Red Hat brand (that need to reach cloud APIs) in that tokenized workflows are equally integrated and workable as with "mint-mode" IAM credentials.
  •  
  • As the managed services, including Hypershift teams, offering a downstream opinionated, supported and managed lifecycle of OpenShift (in the forms of ROSA, ARO, OSD on GCP, Hypershift, etc), the OpenShift platform should have as close as possible, native integration with core platform operators when clusters use tokenized cloud auth, driving the use of layered products.
  • .
  • As the Hypershift team, where the only credential mode for clusters/customers is STS (on AWS) , the Red Hat branded Operators that must reach the AWS API, should be enabled to work with STS credentials in a consistent, and automated fashion that allows customer to use those operators as easily as possible, driving the use of layered products.

Why it Matters

  • Adding consistent, automated layered product integrations to OpenShift would provide great added value to OpenShift as a platform, and its downstream offerings in Managed Cloud Services and related offerings.
  • Enabling Kuberenetes Operators (at first, Red Hat ones) on OpenShift for the "big3" cloud providers is a key differentiation and security requirement that our customers have been and continue to demand.
  • HyperShift is an STS-only architecture, which means that if our layered offerings via Operators cannot easily work with STS, then it would be blocking us from our broad product adoption goals.

Illustrative User Stories or Scenarios

  1. Main success scenario - high-level user story
    1. customer creates a ROSA STS or Hypershift cluster (AWS)
    2. customer wants basic (table-stakes) features such as AWS EFS or RHODS or Logging
    3. customer sees necessary tasks for preparing for the operator in OperatorHub from their cluster
    4. customer prepares AWS IAM/STS roles/policies in anticipation of the Operator they want, using what they get from OperatorHub
    5. customer's provides a very minimal set of parameters (AWS ARN of role(s) with policy) to the Operator's OperatorHub page
    6. The cluster can automatically setup the Operator, using the provided tokenized credentials and the Operator functions as expected
    7. Cluster and Operator upgrades are taken into account and automated
    8. The above steps 1-7 should apply similarly for Google Cloud and Microsoft Azure Cloud, with their respective token-based workload identity systems.
  2. Alternate flow/scenarios - high-level user stories
    1. The same as above, but the ROSA CLI would assist with AWS role/policy management
    2. The same as above, but the oc CLI would assist with cloud role/policy management (per respective cloud provider for the cluster)
  3. ...

Expected Outcomes

This Section: Articulates and defines the value proposition from a users point of view

  • See SDE-1868 as an example of what is needed, including design proposed, for current-day ROSA STS and by extension Hypershift.
  • Further research is required to accomodate the AWS STS equivalent systems of GCP and Azure
  • Order of priority at this time is
    • 1. AWS STS for ROSA and ROSA via HyperShift
    • 2. Microsoft Azure for ARO
    • 3. Google Cloud for OpenShift Dedicated on GCP

Effect

This Section: Effect is the expected outcome within the market. There are two dimensions of outcomes; growth or retention. This represents part of the “why” statement for a feature.

  • Growth is the acquisition of net new usage of the platform. This can be new workloads not previously able to be supported, new markets not previously considered, or new end users not previously served.
  • Retention is maintaining and expanding existing use of the platform. This can be more effective use of tools, competitive pressures, and ease of use improvements.
  • Both of growth and retention are the effect of this effort.
    • Customers have strict requirements around using only token-based cloud credential systems for workloads in their cloud accounts, which include OpenShift clusters in all forms.
      • We gain new customers from both those that have waited for token-based auth/auth from OpenShift and from those that are new to OpenShift, with strict requirements around cloud account access
      • We retain customers that are going thru both cloud-native and hybrid-cloud journeys that all inevitably see security requirements driving them towards token-based auth/auth.
      •  

References

As an engineer I want the capability to implement CI test cases that run at different intervals, be it daily, weekly so as to ensure downstream operators that are dependent on certain capabilities are not negatively impacted if changes in systems CCO interacts with change behavior.

Acceptance Criteria:

Create a stubbed out e2e test path in CCO and matching e2e calling code in release such that there exists a path to tests that verify working in an AWS STS workflow.

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a SRE, I want hypershift operator to expose a metric when hosted control plane is ready. 

This should allow SRE to tune (or silence) alerts occurring while the hosted control plane is spinning up. 

 

 

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The Kube APIServer has a sidecar to output audit logs. We need similar sidecars for other APIServers that run on the control plane side. We also need to pass the same audit log policy that we pass to the KAS to these other API servers.

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Place holder epic to track spontaneous task which does not deserve its own epic.

AC:

We have connectDirectlyToCloudAPIs flag in konnectiviy socks5 proxy to dial directly to cloud providers without going through konnectivity.

This introduce another path for exception https://github.com/openshift/hypershift/pull/1722

We should consolidate both by keep using connectDirectlyToCloudAPIs until there's a reason to not.

 

Once the HostedCluster and NodePool gets stopped using PausedUntil statement, the awsprivatelink controller will continue reconciling.

 

How to test this:

  • Deploy a private cluster
  • Put it in pause once deployed
  • Delete the AWSEndPointService and the Service from the HCP namespace
  • And wait for a reconciliation, the result it's that they should not be recreated
  • Unpause it and wait for recreation.

DoD:

At the moment if the input etcd kms encryption (key and role) is invalid we fail transparently.

We should check that both key and role are compatible/operational for a given cluster and fail in a condition otherwise

AWS has a hard limit of 100 OIDC providers globally. 
Currently each HostedCluster created by e2e creates its own OIDC provider, which results in hitting the quota limit frequently and causing the tests to fail as a result.

 
DOD:
Only a single OIDC provider should be created and shared between all e2e HostedClusters. 

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

This is a clone of issue OCPBUGS-3405. The following is the description of the original issue:

In case it should be used for publishing artifacts in CI jobs.

Look into to see if the following things are leaked:

  • pull secret
  • ssh key
  • potentially values in journal logs

Description of problem:
pkg/devfile/sample_test.go fails after devfile registry was updated (https://github.com/devfile/registry/pull/126)

This issue is about updating our assertion so that the CI job runs successfully again. We might want to backport this as well.

OCPBUGS-1678 is about updating the code that the test should use a mock response instead of the latest registry content OR check some specific attributes instead of comparing the full JSON response.

Version-Release number of selected component (if applicable):
4.12

How reproducible:
Always

Steps to Reproduce:
1. Clone openshift/console
2. Run ./test-backend.sh

Actual results:
Unit tests fail

Expected results:
Unit tests should pass again

Additional info:

Description of problem: This is a follow-up to OCPBUGS-2795 and OCPBUGS-2941.

The installer fails to destroy the cluster when the OpenStack object storage omits 'content-type' from responses. This can happen on responses with HTTP status code 204, where a reverse proxy is truncating content-related headers (see this nginX bug report). In such cases, the Installer errors with:

level=error msg=Bulk deleting of container "5ifivltb-ac890-chr5h-image-registry-fnxlmmhiesrfvpuxlxqnkoxdbl" objects failed: Cannot extract names from response with content-type: []

Listing container object suffers from the same issue as listing the containers and this one isn't fixed in latest versions of gophercloud. I've reported https://github.com/gophercloud/gophercloud/issues/2509 and fixing it with https://github.com/gophercloud/gophercloud/issues/2510, however we likely won't be able to backport the bump to gophercloud master back to release-4.8 so we'll have to look for alternatives.

I'm setting the priority to critical as it's causing all our jobs to fail in master.

Version-Release number of selected component (if applicable):

4.8.z

How reproducible:

Likely not happening in customer environments where Swift is exposed directly. We're seeing the issue in our CI where we're using a non-RHOSP managed cloud.

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

When solving flakiness of a test in IO tests, we found that there are some issues in the cluster_version_matches condition for the conditional gatherer. 

Firstly the character limit should be increased as 32 characters does not cover every possible release version as some exceed that limit. 
Furthermore, there is an error in the schema

https://github.com/openshift/insights-operator/blob/master/pkg/gatherers/conditional/gathering_rule.schema.json#L101

There is no name, it should be version

How reproducible:

Sometimes

Steps to Reproduce:

1. Spin a cluster from a PR
2. If version exceeds 32 characters, we get in the pod logs: 'Could not get version from string: "<"'
 

Actual results:

'Could not get version from string: "<"'

Expected results:

Metadata should contain "Metadata should contain invalid range error"

Additional info:

However, since there's the possibility for versions to exceed 32 characters, we shouldn't expect an error in this situation. Therefore, there might be more than one issue.

Description of problem:

Installation fails on AWS because the installer manifests include an invalid ingresses.config.openshift.io/cluster manifest.

Version-Release number of selected component (if applicable):

4.12.

How reproducible:

Seems to be a consistent failure.

Steps to Reproduce:

1. Install a cluster on AWS without specifying lbType in the install-config.

Actual results:

The cluster bootstrap fails with the following error message:

"cluster-ingress-02-config.yml": failed to create ingresses.v1.config.openshift.io/cluster -n : Ingress.config.openshift.io "cluster" is invalid: spec.loadBalancer.platform.aws.type: Required value
 

Expected results:

Cluster bootstrap should succeed.

Additional info:

https://github.com/openshift/installer/pull/6478 introduced the problematic logic that sets spec.loadBalancer.platform.aws without setting spec.loadBalancer.platform.aws.type.

 

This is a clone of issue OCPBUGS-2551. The following is the description of the original issue:

Description of problem:

When normal user select "All namespaces" by using the radio button "Show operands in", The ""Error Loading" error will be shown 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-18-192348, 4.11

How reproducible:

Always

Steps to Reproduce:

1. Install operator "Red Hat Intergration-Camel K" on All namespace
2. Login console by using normal user
3. Navigate to "All instances" Tab for the opertor
4. Check the radio button "All namespaces" is being selected
5. Check the page 

Actual results:

The Error Loading info will be shown on page

Expected results:

The error should not shown

Additional info:

 

This is a clone of issue OCPBUGS-5151. The following is the description of the original issue:

Description of problem:

Cx is not able to install new cluster OCP BM IPI. During the bootstrapping the provisioning interfaces from master node not getting ipv4 dhcp ip address from bootstrap dhcp server on OCP IPI BareMetal install 

Please refer to following BUG --> https://issues.redhat.com/browse/OCPBUGS-872  The problem was solved by applying rd.net.timeout.carrier=30 to the kernel parameters of compute nodes via cluster-baremetal operator. The fix also need to be apply to the control-plane. 

  ref:// https://github.com/openshift/cluster-baremetal-operator/pull/286/files

 

Version-Release number of selected component (if applicable):

 

How reproducible:

Perform OCP 4.10.16 IPI BareMetal install.

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

Customer should be able to install the cluster without any issue.

Additional info:

 

This bug is a backport clone of [Bugzilla Bug 1948666](https://bugzilla.redhat.com/show_bug.cgi?id=1948666). The following is the description of the original bug:

Description of problem:

When users try to deploy an application from git method on dev console it throws warning message for specific public repos `URL is valid but cannot be reached. If this is a private repository, enter a source secret in Advanced Git Options.`. If we ignore the warning and go ahead the build will be successful although the warning message seems to be misleading.

Actual results:
Getting a warning for url while trying to deploy an application from git method on dev console from a public repo

Expected results:
It should show validated

Description of problem:
Installed and uninstalled some helm charts, and got now an issue with helm charts on all our releases. The issue is solved in 4.13.

The frontend tries to load /api/helm/releases?ns=christoph and the backend crashes with the error below.

Tl;dr:

It crashes here in the helm lib: https://github.com/openshift/console/blob/release-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go#L66

And the missing out of bounds check is added on master: https://github.com/openshift/console/blob/master/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go#L66

As part of the helm bump https://github.com/openshift/console/pull/12246

2023/02/15 13:09:09 http: panic serving [::1]:43264: runtime error: slice bounds out of range [:3] with capacity 0
goroutine 3291 [running]:                                                                                             
net/http.(*conn).serve.func1()                                                                                                                                                                                                              
        /usr/lib/golang/src/net/http/server.go:1850 +0xbf                                                             
panic({0x2f8d700, 0xc0004dfaa0})                                                                                      
        /usr/lib/golang/src/runtime/panic.go:890 +0x262                                                               
helm.sh/helm/v3/pkg/storage/driver.decodeRelease({0x0?, 0xc000776930?})                  
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go:66 +0x305
helm.sh/helm/v3/pkg/storage/driver.(*Secrets).List(0xc000b2ff80, 0xc0004bbe60)                                                                                                                                                              
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/secrets.go:95 +0x26f
helm.sh/helm/v3/pkg/action.(*List).Run(0xc0005fb800)                                                                  
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/action/list.go:161 +0xc5
github.com/openshift/console/pkg/helm/actions.ListReleases(0xc00037d680?)                
        /home/christoph/git/openshift/console-4.12/pkg/helm/actions/list_releases.go:11 +0x6b
github.com/openshift/console/pkg/helm/handlers.(*helmHandlers).HandleHelmList(0xc00014f000, 0xc000844960, {0x351ae00, 0xc00086d180}, 0x7fea2c6e5900?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/handlers/handlers.go:154 +0xdb
github.com/openshift/console/pkg/server.(*Server).HTTPHandler.func7.1({0x351ae00?, 0xc00086d180?}, 0x7fea56daf108?)
        /home/christoph/git/openshift/console-4.12/pkg/server/server.go:286 +0x3c     
net/http.HandlerFunc.ServeHTTP(0xc0009b8170?, {0x351ae00?, 0xc00086d180?}, 0xc000c5b9f8?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f 
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc00086d180}, 0xc000248800)       
        /usr/lib/golang/src/net/http/server.go:2487 +0x149
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc00086d180}, 0x7fea2c5c8248?)
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af
net/http.HandlerFunc.ServeHTTP(0xc0009ed667?, {0x351ae00?, 0xc00086d180?}, 0x109034e?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.serverHandler.ServeHTTP({0xc001048120?}, {0x351ae00, 0xc00086d180}, 0xc000248800)
        /usr/lib/golang/src/net/http/server.go:2947 +0x30c
net/http.(*conn).serve(0xc0007580a0, {0x351cca0, 0xc000145740})
        /usr/lib/golang/src/net/http/server.go:1991 +0x607
created by net/http.(*Server).Serve
        /usr/lib/golang/src/net/http/server.go:3102 +0x4db
2023/02/15 13:09:09 http: panic serving [::1]:43256: runtime error: slice bounds out of range [:3] with capacity 0
goroutine 3290 [running]:
net/http.(*conn).serve.func1()
        /usr/lib/golang/src/net/http/server.go:1850 +0xbf
panic({0x2f8d700, 0xc000273440})
        /usr/lib/golang/src/runtime/panic.go:890 +0x262
helm.sh/helm/v3/pkg/storage/driver.decodeRelease({0x0?, 0xc0004dc8a0?})
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go:66 +0x305
helm.sh/helm/v3/pkg/storage/driver.(*Secrets).List(0xc000de8e88, 0xc0011cb400)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/secrets.go:95 +0x26f
helm.sh/helm/v3/pkg/action.(*List).Run(0xc00068d800)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/action/list.go:161 +0xc5
github.com/openshift/console/pkg/helm/actions.ListReleases(0xc00037d680?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/actions/list_releases.go:11 +0x6b
github.com/openshift/console/pkg/helm/handlers.(*helmHandlers).HandleHelmList(0xc00014f000, 0xc000844960, {0x351ae00, 0xc000b60b60}, 0x7fea2c47e700?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/handlers/handlers.go:154 +0xdb
github.com/openshift/console/pkg/server.(*Server).HTTPHandler.func7.1({0x351ae00?, 0xc000b60b60?}, 0x7fea56daf5b8?)
        /home/christoph/git/openshift/console-4.12/pkg/server/server.go:286 +0x3c
net/http.HandlerFunc.ServeHTTP(0xc0003d72b0?, {0x351ae00?, 0xc000b60b60?}, 0xc000bcd9f8?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc000b60b60}, 0xc000cabd00)
        /usr/lib/golang/src/net/http/server.go:2487 +0x149
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc000b60b60}, 0x7fea2c6d9838?)
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af
net/http.HandlerFunc.ServeHTTP(0xc000344f47?, {0x351ae00?, 0xc000b60b60?}, 0x109034e?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.serverHandler.ServeHTTP({0xc001048180?}, {0x351ae00, 0xc000b60b60}, 0xc000cabd00)
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc000b60b60}, 0xc000cabd00)                                                                                                                                                         
        /usr/lib/golang/src/net/http/server.go:2487 +0x149                                                                                                                                                                                  
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc000b60b60}, 0x7fea2c6d9838?)                                                                                                                         
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af                                                                                                                                                      
net/http.HandlerFunc.ServeHTTP(0xc000344f47?, {0x351ae00?, 0xc000b60b60?}, 0x109034e?)                                                                                                                                                      
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f                                                                                                                                                                                   
net/http.serverHandler.ServeHTTP({0xc001048180?}, {0x351ae00, 0xc000b60b60}, 0xc000cabd00)                                                                                                                                                  
        /usr/lib/golang/src/net/http/server.go:2947 +0x30c                                                                                                                                                                                  
net/http.(*conn).serve(0xc000758000, {0x351cca0, 0xc000145740})                                                                                                                                                                             
        /usr/lib/golang/src/net/http/server.go:1991 +0x607                                                                                                                                                                                  
created by net/http.(*Server).Serve
        /usr/lib/golang/src/net/http/server.go:3102 +0x4db
2023/02/15 13:09:09 http: panic serving [::1]:42956: runtime error: slice bounds out of range [:3] with capacity 0
goroutine 3261 [running]:
net/http.(*conn).serve.func1()
        /usr/lib/golang/src/net/http/server.go:1850 +0xbf
panic({0x2f8d700, 0xc000273740})
        /usr/lib/golang/src/runtime/panic.go:890 +0x262
helm.sh/helm/v3/pkg/storage/driver.decodeRelease({0x0?, 0xc0005f6000?})
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go:66 +0x305
helm.sh/helm/v3/pkg/storage/driver.(*Secrets).List(0xc00094a570, 0xc0003d79e0)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/secrets.go:95 +0x26f
helm.sh/helm/v3/pkg/action.(*List).Run(0xc00068d800)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/action/list.go:161 +0xc5
github.com/openshift/console/pkg/helm/actions.ListReleases(0xc00037d680?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/actions/list_releases.go:11 +0x6b
github.com/openshift/console/pkg/helm/handlers.(*helmHandlers).HandleHelmList(0xc00014f000, 0xc000844960, {0x351ae00, 0xc000b48a80}, 0x7fea2c403300?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/handlers/handlers.go:154 +0xdb
github.com/openshift/console/pkg/server.(*Server).HTTPHandler.func7.1({0x351ae00?, 0xc000b48a80?}, 0x7fea56dafa68?)
        /home/christoph/git/openshift/console-4.12/pkg/server/server.go:286 +0x3c
net/http.HandlerFunc.ServeHTTP(0xc0011cbb60?, {0x351ae00?, 0xc000b48a80?}, 0xc000ff59f8?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc000b48a80}, 0xc0002a3c00)
        /usr/lib/golang/src/net/http/server.go:2487 +0x149
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc000b48a80}, 0x7fea2c478e18?)
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af
net/http.HandlerFunc.ServeHTTP(0xc00084bfc7?, {0x351ae00?, 0xc000b48a80?}, 0x109034e?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.serverHandler.ServeHTTP({0xc000c3f890?}, {0x351ae00, 0xc000b48a80}, 0xc0002a3c00)
        /usr/lib/golang/src/net/http/server.go:2947 +0x30c
net/http.(*conn).serve(0xc0008a9f40, {0x351cca0, 0xc000145740})
        /usr/lib/golang/src/net/http/server.go:1991 +0x607
created by net/http.(*Server).Serve
        /usr/lib/golang/src/net/http/server.go:3102 +0x4db
2023/02/15 13:09:09 http: panic serving [::1]:42954: runtime error: slice bounds out of range [:3] with capacity 0
goroutine 3247 [running]:
net/http.(*conn).serve.func1()
        /usr/lib/golang/src/net/http/server.go:1850 +0xbf
panic({0x2f8d700, 0xc000273a88})
        /usr/lib/golang/src/runtime/panic.go:890 +0x262
helm.sh/helm/v3/pkg/storage/driver.decodeRelease({0x0?, 0xc0005f78f0?})
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go:66 +0x305
helm.sh/helm/v3/pkg/storage/driver.(*Secrets).List(0xc000de9560, 0xc0009b8c00)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/secrets.go:95 +0x26f
helm.sh/helm/v3/pkg/action.(*List).Run(0xc0005fb800)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/action/list.go:161 +0xc5
github.com/openshift/console/pkg/helm/actions.ListReleases(0xc00037d680?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/actions/list_releases.go:11 +0x6b
github.com/openshift/console/pkg/helm/handlers.(*helmHandlers).HandleHelmList(0xc00014f000, 0xc000844960, {0x351ae00, 0xc000b60ee0}, 0x7fea2effb100?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/handlers/handlers.go:154 +0xdb
github.com/openshift/console/pkg/server.(*Server).HTTPHandler.func7.1({0x351ae00?, 0xc000b60ee0?}, 0x7fea56daf5b8?)
        /home/christoph/git/openshift/console-4.12/pkg/server/server.go:286 +0x3c
net/http.HandlerFunc.ServeHTTP(0xc0002a91d0?, {0x351ae00?, 0xc000b60ee0?}, 0xc000c319f8?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc000b60ee0}, 0xc000cab000)
        /usr/lib/golang/src/net/http/server.go:2487 +0x149
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc000b60ee0}, 0x7fea2eff84e8?)
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af
net/http.HandlerFunc.ServeHTTP(0xc000df4be7?, {0x351ae00?, 0xc000b60ee0?}, 0x109034e?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.serverHandler.ServeHTTP({0xc000d2d320?}, {0x351ae00, 0xc000b60ee0}, 0xc000cab000)
        /usr/lib/golang/src/net/http/server.go:2947 +0x30c
net/http.(*conn).serve(0xc0002688c0, {0x351cca0, 0xc000145740})
        /usr/lib/golang/src/net/http/server.go:1991 +0x607
created by net/http.(*Server).Serve
        /usr/lib/golang/src/net/http/server.go:3102 +0x4db
2023/02/15 13:09:09 http: panic serving [::1]:55334: runtime error: slice bounds out of range [:3] with capacity 0
goroutine 3328 [running]:
net/http.(*conn).serve.func1()
        /usr/lib/golang/src/net/http/server.go:1850 +0xbf
panic({0x2f8d700, 0xc000273dd0})
        /usr/lib/golang/src/runtime/panic.go:890 +0x262
helm.sh/helm/v3/pkg/storage/driver.decodeRelease({0x0?, 0xc000d0b020?})
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/util.go:66 +0x305
helm.sh/helm/v3/pkg/storage/driver.(*Secrets).List(0xc000de98a8, 0xc0001cb670)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/storage/driver/secrets.go:95 +0x26f
helm.sh/helm/v3/pkg/action.(*List).Run(0xc000dad800)
        /home/christoph/git/openshift/console-4.12/vendor/helm.sh/helm/v3/pkg/action/list.go:161 +0xc5
github.com/openshift/console/pkg/helm/actions.ListReleases(0xc00037d680?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/actions/list_releases.go:11 +0x6b
github.com/openshift/console/pkg/helm/handlers.(*helmHandlers).HandleHelmList(0xc00014f000, 0xc000844960, {0x351ae00, 0xc000b610a0}, 0x7fea2effb100?)
        /home/christoph/git/openshift/console-4.12/pkg/helm/handlers/handlers.go:154 +0xdb
github.com/openshift/console/pkg/server.(*Server).HTTPHandler.func7.1({0x351ae00?, 0xc000b610a0?}, 0x7fea56daf5b8?)
        /home/christoph/git/openshift/console-4.12/pkg/server/server.go:286 +0x3c
net/http.HandlerFunc.ServeHTTP(0xc000430260?, {0x351ae00?, 0xc000b610a0?}, 0xc000e469f8?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.(*ServeMux).ServeHTTP(0x2f32e80?, {0x351ae00, 0xc000b610a0}, 0xc000537900)
        /usr/lib/golang/src/net/http/server.go:2487 +0x149
github.com/openshift/console/pkg/server.securityHeadersMiddleware.func1({0x351ae00, 0xc000b610a0}, 0x7fea2c6da648?)
        /home/christoph/git/openshift/console-4.12/pkg/server/middleware.go:116 +0x3af
net/http.HandlerFunc.ServeHTTP(0xc000df53f7?, {0x351ae00?, 0xc000b610a0?}, 0x109034e?)
        /usr/lib/golang/src/net/http/server.go:2109 +0x2f
net/http.serverHandler.ServeHTTP({0xc0005f7a10?}, {0x351ae00, 0xc000b610a0}, 0xc000537900)
        /usr/lib/golang/src/net/http/server.go:2947 +0x30c
net/http.(*conn).serve(0xc000c203c0, {0x351cca0, 0xc000145740})
        /usr/lib/golang/src/net/http/server.go:1991 +0x607
created by net/http.(*Server).Serve
        /usr/lib/golang/src/net/http/server.go:3102 +0x4db

Version-Release number of selected component (if applicable):
4.8-4.12 doesn't show a helm release list.
4.13 works fine

How reproducible:
Always with this Helm chart secret:

Steps to Reproduce:
Unable to reproduce this manually again.

But you can apply the Secret at the end to any namespace and test it with that on 4.8-4.12.

Actual results:
Crash

Expected results:
No crash

Additional info:

Secret to reproduce this issue:

kind: Secret
apiVersion: v1
metadata: 
  name: sh.helm.release.v1.dotnet.v1
  labels: 
    name: dotnet
    owner: helm
    status: deployed
    version: '1'
data: 
  release: >-
    SDRzSUFBQUFBQUFDLytTOWEzT2JUTkl3L0ZmMDZ2NzRPZ2tnS3h1NWFqOFlZaUVVaVVUSTRyVFoybUlHREVqRDRSRWdHZTJULy83VXpBQUNoR3pMY1pMcjNyMnFyb3JGWWVqcGMvZDB6L3k3SDFxQjA3L3AyMUVhT21uL3F1K0hEMUgvNXQvOUIzK2JwUCt5blJoRnVXUDNiL29jd3czZU1kdzc5dnFlRzl4Y2oyNVk3djNINFhBMFpKa2g5Lzh6N0EzRDlLLzZ5SHJOVzdhRG5KUThUMzRrY092SHFSK0YvWnUrRkNhcGhWQVBSa0dNSCtwZjlaUFVTck1FQTExKzU2b2ZScW1ETDMwUGpTamI5dDdMZC9jOUs0NTdmdElEbVk5c1AzVC92OTU5MU52NXpyNlhlZzY5MmtPUm0xejF0bGw0OHozOEhrYVFYT2dCK0lIaW8vZnUzVU9FVUxUSGQrVW9kWHFwWjZXOUhIL2lNL2w0NElScGIrOGoxTnM2Y2JSTmU5LzdkOXV0RkZpdTh5MUQ2SHUvWjRWMjczdS91c0piY1BQMTRlRjd2NWVGcVk5cXNQaEpOY24zdmE4aGRMcnZYZEhQKzNoQSttWGc5S3dzalFJcjlhR0ZVTjdiUmdnNWRpL0swdmY5SDFkOTZGbmJGTk0wY0ZMTHRsSUwvOTJtKzg3WkpoVGp6SHZtUFh0Q2g5dmV4RUZCajR6VlM2TUNManc1U29VSzVjaUhGbjRuNlYvMU4wNitqN1oyMHIvNVIzK0w1eHM0K0hMeDBYOWU5YTNZVjZzUDc3aitWZDhLd3lndEJyajVONFg5WDlrVzlXLzZYcHJHeWMySEQ2NmZlaGw0RDZQZ1F4UTdZZUw1RCtrN3owSEJPL0owOHFINForc2d4MHFjNUlNZDdVTVVXZmFIcldON1Z2cU9mdjhkbVdqWHRmZXBlK2ovK0hIVlJ4SGM5Ry9DREtHcmZ1b0VNYklJbC8yalFsOTE4WVA4OWY1dStUNTl4TGlrT080N2d5U1ZSQlJJd25CcGFvL0kwR1UwMjZERFVoc2ViSEdjQUlFZlBTeGlFd3pVWEJLR1h4VjE0Um82djVkRWRKREVLV3Rwanh0TEc0YlNrbCtCbk9jc1RSMUlFeVV5bDd4dmF5Z3hCVDRCbkgyWUNYeHVhOWNmQlRmZUdUbTlKb25UOVd5US9rMFNVV1p3ajZ3cHJsd3BVSGEyT0VTMk1Nd01qVVdTZjV0SkUzWWtDVXhxQnFNRWlLT0I0TVpmd1VCQitEdUd2bkFkYmNSQ243OHpkVDRCQTVTYTJwQ1JKbllNeEwwTEEzVVBCbE5HRXFaakdFNm5RQnVIcHNxelFOejdrampPVE9IV1gycXNaM0xxd3RZZWswVXdYbHZNS0RCOXliVzFJV05wZTljV1BWVE9sYzViM2dHZFQweGRRVE9mL3dZQ0diWG1ITU9jWHdPTzNRTlJaY3psdm9ReEp0OWY4Z05MZTB3a2NZb2tjY3phNGlnMWRDVTJ1SEVDSmhzWGtubXFHMGtjc2Jady9ZWFNTTTFNUW91Ly83My80NnFEdVAveUhCUTcyK1I5R3FNMmZSVmtCaWd6bDdlK0tZNFlFS2pNTEJoNlFGdjVrc0JpK3Y3TnlmbU5xWm1lclQweVRWNGd6N2t6WkhwZ29pS1lEME1nam54RDIyY2dHS2ZtYXNTWitqUzNORXdQZGlTRTZkOW1TeDZCWU9IT2RIWWt1SGhzeGpWRk5iQzBJWktFNlFZTWxNelVGeGtReDc2cFBSNGsvelo5MEprdmxxZ21ZRGs4V01Kb2JZbmozUDRjdWM0Z2NXY2JPVEwwS1ZQQ2dwL0YxeTF0dUFZVGRkT1lWeWdqSUtwcld4emw5OGZ4c3hwc3NlbmZaZ3ZPODJDNHlCWTZ2MWNETlljYzJnR2Y4TG9ISjdlWk5WQjlVNTltbU1Zd0g4WWdKL004V05vbysrcnpmM1B5czJOOGtpWmpsdkpuRXg4WWJpdzdzeUJsalVETk1ieW1QczhzN2RNT2FPUE0wR3hrQ3F6djNCZnpSbE04Rnc5eXEyekZxYmtkb0xXNVBNSUlCandDb1J4Wm1zbk1BclNiRGFZc0NKVVlhS3VQa2xqSTBXMkJmMjI0SWZBOFFRL0lxWW1weVF3WVRPZUdOa1ZnTWkvNTR4eE9pSXhTZlBBeENPVEV4bnhRcHpIbWthWGt6cDdHYlF4Q21URzA0ZHJzbVBzOUdZTXYrTFNZQzRFcituS2V2MUdLOFhsZmZsK250S0RQamxrd1diaGZudEU3WDVhM21ScU1FMXRURCtWNGhkeGdXbjZrY0ZaeVVjajJrREUwV1BKb0liZUV2OC9JTFRGU01Bb2ZmUGQ5YmdXb1V6ZHJodmJJWWw0eFFqVUc0aUl6dGFGbkJJK0k2b1RZZ3lMU2F2eFo2S0hoRG9wcUJqa3ZOc01GNFRON2ZmZkY0bEJtZm83Y0JSbEwrUXk0WVdCcDhBdlFWTWJRRk04Vzd6NEsvcTFMYUZmUW8xUFdLaDF5VGVZckNYeFM4QTE1WHhKNFFxL3VkeDg5STFBVG1CUGUrQ1NKd3hnRUNnTGh3cFhwbkE1UVZOZGYzY2dsZW5EQ3MvYm42SXNrM0xyU1JObVI2d0w1eHRiU2hwdFNKby8wb3ZwNkZoVHZDa1B5SEpFQkF0dXRLNGtFL28vUzVLd05valJkTmVkWjBZWGFqOGpVNytwOFVPSGUxcFc5clM4eWdtL2gxbGZFMGRyaTFKemFtNVhmNUs4VGVQZTJMa2NyVGwzRFFHV09jUE9ONnpVODFHVHh3bkZiT2tvUytBTzI5d2EzS3VuSU9EcVB4NTVZK29MU1FMVGppaDdDcld2cjAvanN0ME0xdDRqOFZyRG1wbVpRdkhmd05nelVvSzJ2VCtjajcwQ29JR2VpM0ZtNlZNQ040V3BjUC9zTmd4dGx0cWhlMjNkS0RQMldiaWx3RFFkS2J1Z0tNZ2ViTmg3dUMvd1UvQ2p2YkgyNk5sV1pnY0dZTVRWN1dLTkxBSU5SZXZ5TllVeGpFQ3crU25kVXA2d0dTbTVxNDFRVngySEZtMEpUL2pyNGkvSW0rYWJxQVZYeHpMelFYUVg4VCtrUGkvbzg5L1praWd5TlhSa2F6R3hkUnFzQTI0RHhnZks4ZW9EaXVMQTVkZmhyOTg3cGExM2VHNXJjZ2tWTklMYzYwcXJHdDNEQWU1amZ6dEdyQzE1dy9qdUZyeFM1ZUx5elBCUmlQL0R4M3RUazNOUVhEYmpnUkUzQVdFYkdZSXJxZlA2c25IV095Wi93RnNXam10bnI2TXRSVHhwZGRFWWdOTm80STgvYkV6NlJCSThCTFBLQXRqLzNia3owbHNCbldQOFIzL2l6K3pSY3dxMDdXNWJ6dlBXVnU5SHFmcU91ZEZaZUxkVHBTbFg1aDlWNCttMjVVVCtyZ2xTREM4c0NoZUU4Zm1RRyszSzJ6aTlnTVBvLzJOK1FKbnNYNnVyT0ZsZE4vZHF0R3dyZHBCNHFPYTFkSytXTWpERlJkcG8yVG9IUUJjY1VRVzdFd2tCR01PKzBQeWU0c1NmVDJPUnNCTVBTdnQzaWJ3eWh1UG9vM2NrN0VKaXh5Y2lSb1ExRHMvVit0KzJuWmordzRoZFlmbE5VOTBBY0RXZkJlQS9GUnh3dE1OamFyeVpUYk9WelcwU1k4Z2dFWTU5RUR4anFZTHkzVkJQQlVJNEJkLzFSbWhpUFFsQnFueEppMW9PM2NXcnFpbWVLWThhNEp4eDVvV2VIclhSaDBRK2xsYWFTMS9sdXd6UGZ1d0I3YjFnYWhGdHFrWUtqRjRJOVppQ2lOWTZRQUhlZHdmcDhENUg3SUREMTd6RlFiRWpDaGthRm02dzV6aEJ6Mzk3VXA0eUZ1U0xrYyt4TncxQ0pUWDEremlONUFVWHRLdVBTSXFtaDgzRVZKS3dqTWkyWWo3ajVJaTRkbUVZQUt3UXNzc1h4eHRBVmp6cEJ6em9yallDWk9IQUZtaHRDMGYxdWNuVDQyOHBpMGVYMGRCaGtOVE8wYVdKcTJMRldIN3VFRnd4VUJrNnc4MGRZMEpVMnB3WlE4amVsY3ZKQU1OelpJbVh6aXEzRTBoRWY3VTF0ZUxCRUZCQkhMUjh4TUVDaHlhbDVneTJFVzFmYjE0elhKR2txTEdGS0RMUzBqdjlXVjRERlBlbzBycU15U1ZBM1FQN3NObW85ZitzWFl2RlJDaTl5S3YzbXQvblJ5ZGhZVkxYSHpRcmpROERqeTN0VG0yTW5Kb1hpbzJlTHF3d09lR1Rrd3pYZ2NCQ0NNaHdRYUFmZUxvTVhxZTZFVEk3NDBkdktqbzc5c1ZDdWhkak1UNHh6cFpLd01xVXE2YWlVcTJCU0twMm4xTkNWdFhYWFVoTlA4K1dCSkNJR3lnNXVuZ2dZU2hVMFVSRFErUVE3YlNYUHQ0TWF5a09uTUx3MldQa3FISjBqZ3Y5RDlPVnA5WTB5U3lkQlYwV2pwbE53ZXIvaFBOYlUzSmRPQTZkZ1d1eWNKWVlSTVF2aTZJNWpnSFZQdmprRGYzekdRU0hPdEdkcHc3clJhemtJL01EVVdrNUFJYU5QbVkvQ29mdmExbGsxZXBERUhTenhPWmw2SUxCUk4vL3hPeGdxaDlNeDhQOU0wNUUrQnZBdFBVQytXWmVkQmY1KzZjalk0amczT1pWWmlhUGNGbG9PY1VVYmJFYVVuY0dOa3ZJOWJLNXNjYlFHM0w2VkZEaml2ZVg0VlNhcnk5bXB3WnFiZWhGNDZFM2ExUG1rd3prOE0zN0RERC9PdTRLaXpvQ3M0cmZFMGswRUF2VUFXVDRIM0JSMXdIenlUSU8zWCtiY1Z2QURFWEVtNXMyQmpNMjVieTVQK1h0K0w3MEc3NTRwWWg2UUQ5aTlNb0lPZmlGMlFJbmZhaTRkMyt4dzNPL3lyb0Q5YVgyalpyWi95cSttTnVSK0JsNzgvcGZsaWZ2MkdyNUJJRFJGWW9OUCthVzY5N093S3VGMEIxN01IODF2MmNFb3NUVVczV3NqRm9USzRhdjdOUDg4NldyVy9LUXVIVlRUcXg2YzhJbWx5WjR0b2gzdzJYMTluRk05aDIwZGdXOWg2RXAwR29CVitHNk9peHF1YjFZZjQySmVDODBkbUtpcHVXSjN0alprWU42bEoxOU90emJlMzRyZm5JbVNHNnVHYmJzMHdEN3lsdTR4TUJnMzdIVUhuTmZkaWJZbWY4Rm5mWWNMUWovL1ozbUsyTUxBMG16WjBHOVA3Y3VsOGNocitFaC9QVjBxbkw3UTUra081OGdLZHBKdUhTczRGNkwvcG5pb0hUOVMvMm5Wc1FoVUQvR2I0LzNWWXNyU1g1YklJdkZvYSt2OEFuQ1BzWEZNdUNhQWt6M3dPWEx0eVpSOVdWSmxHMldwYzBsQ0paenViRjFCYmMzY3hqZ01SaXlPc3A3RStKaU85UmZHTkFPcVNMcUVXVVl3Tk9NcW5mMEtXQ0gyaW8vTE14NE1iR1NQc1ZlK29PTk1sUDJaS0NYSFVrQ1d6ZlJwYU9yS2dpN1hYNzlBU3hSMEM1V2tTL3ZaNGhGM3Rxam1RRU5aa1VSNktwS3RqOG1ZK2pTMXRHR2hMWS9Xek5Kd1pDcXpNRkRIcG1nanRUSCtzT0xpRjM0bkJxR01qSUdhbXl0MVkzTHFxdkZkeE8rd04rRXNuMHBwbitJVFRPYVp4YW5EMnRMUjF0UXhUUHUwMHVaa3JKZU8wN0JvM0dVcDkrNXhUVkU5MkdLRnQ4K0xsVXc5a1lCNFQ3VUlndCtZdXN4VU9ObkkvSUlqbGkrZzFtejFxbms5Ly8yM243UEJqVDlUaTJzU1MxNWZYam01ZDkvTVpKSHZQczlQYStPM3pLT0IvL29TWE9QYlgzMyswK3k0OUVjMGVIY0VSUFVybHR0WjhCcjRPNzNBMHVNNHMveWVPTnVkRDUxbnNyWDFaZk9xRkdQeEYwdWExN0oyOWdUdE81WU9qN2d1NTZDUzVZdHEyYmZLdHEyZmg2ZTdYS1RiL3RTek9SZG1zZWg3SFY2Y1hKVkQvZk9xdjdOUTVwQnFQRkpQUWNyeW9qQjFIdFBQL3JZc2ozTkNDeURIN3QrazI4ekJQM2ZsSGVMbkxZbWZkMis1SjdXSE53TlNiWWl2SmJFRjhZMnFxcTkvMWM4U1I2RjFmUEx4aVFjTEpjNlBxMzZVcFhGR1NoczNmbWozYjJpWjVmRmJWLzA0Uzd5bEE3ZE9Tc0g1Z1M4aFZMOTAxZDg2RHhVNE1ObzY3eWhJV3llSnNpM0VVNmZQSmFtMVRiUDQyelphT3pEdDMvU3RPTVlnYnYzdTZzU3l0TkRaT1NpS25lMkhoUFBmMVQ3alBQWi9YQlZWckhnU3RlckpiMXY4UXVwVHZGZklKUk8vNmdkUkZxYmZyTlRyMy9Scnl5TGxvdGNIUFBIYUFQMy8rWi9lY2NDZUcvVThaK3ZnYjlmSTVJUzc4VFlLcXArUDZkWVNvakMxL05EWlZpandRejg5dllyOG5STTZTZkp0R3dFSEE1ekNlQm5CalVOb0UwZmJ0RUFRcWFyRXZ4dFZsT1RPVmZIY0orWVRROEJQSXhpaC9rMy9YdmpXditxbjF0WjEwbS9WSTVneHQ0NWwrNDN2NHBIRTRxc0ZlcXFCandCc0hZTG5wSC9EZGxDWitMZ05yRk9XcmtOUWdwd2lXcVZxQ1JpM0Q1aDRUamtPUEwxa08wbnFoNFRBd20zSEs2MHYrbUhpd0d6cjNObXVjKzlzZytMVmJ4SHlZZDYvNlN1TzdXOHhKNUpLMjJPaGF2VWs5czV0MXlHVExwVHhmUjVqbEFzb1MxSm5LMkhVN2lLVUJjNGM4MVNGQkhvdHFZVEdSUkd3VUNtOFgzZk9kdXZiVG5XYnlQaFJ0QXRBc0xUM2lTbElLUWpRY3dJU01wU0xScjV5TURnUEFlM08vK3JmK3RaRVllRG5hRGZqNGdQZ3JsUEl5Wkdwc2Q0c0dPVm1QdHJBWUJ6WUFyT1g4MUgxWHJXWTAxeG45TEdwYUFUVzVVTE5PbktkL2VuaUVsSHJTK21qSkV4M1JoQWpZN0RvWElUQ2JvMHhtTVp3UXR4ZEFyZFNWUHpCbkdjc2NWVUdrS1F5VlpyWUhsYXB0dmpKTFlMVFhlbGFTUDcrTkZIKzNEeTZGc1JPRnQ3T3pHMmMrSENnNUtTcTJOKzdVakFrMWJyNmN2L2srMTF6TGlvSGQ2Wi8yWnhuUG45WFZzTmlmSUVDWjdDc2ppa1NLak5mNm9acHdpVG44R0hqb0w2YnZ2V0ZSMUpwaEorVFFwbUIyTlRuMHJreEM5NVJFT1RrM05KNWtod2k3eUxGTXduc1kwYWFvSjI5NUFjR3FZNVdkbVZGODR3clRlM1p1WnhjYnlUMTJuTXRFaUMvZ29kTDkwQ2FUQkVReHd3TzFUSDlHaFhhUDhtdng4cktDM2hXbVBxQUcySGV5RHEvLzV4c0Z0K2NjVW9NT1J6R3J1aWM3a2FmVndJdjBHcWVWL0NhUG8xL0g2K3B5eVdWdFltbEs1S3RTVVgxdlJ6YjRpaC9nci9Pd2s4cUFYOFgvQnM3dG1sbG90Lzlic2VpZk1WZkhWVk52dzN2dkdlTExwR0QyV1k0VmdWK1g4RWdtakhtSlRDUVhEaVo3cXhBWGRzQ3Y3SDBLWFh6dzAwbXVkMHdQcHpWdDFPeVNHcnFIcU9JS0w5a25sbytQZGlUYVF3QzZNK3diUWpWQkFoVCt5eGU2ZnM0OUYvREFPMXBHb2JJMitjU0JrbFVZaGpRaW45bnlROHNYWWtzN2Jyc3VKaFkrb0x5SWRYakxPUldycUhQcVh4TnBqc3dXTGhtTU1xYkhSeVg4MnBIaGVKVGVxYmdHeEorRVIwQXVDbWwyU3YweDVONmNUTFByWEplb3BwUEIzUDNoY1VzZFJvMEZncWVwL2xGdHYvblpPSkNINkJyN3MrT2Y1N3VkZGhaeUtsVjUweWpDdlpsK0RyaENTTVk3WUNvZXNEL09Sd29vbHFtTXJIL0Z6K0JDOWZTNXk2V0gycFRHMVhBUXpEQXNqTkZsTTlVRDNLWVBsaXVwR2ZwKy9DMC8xYm90L3IzL2l6ZnFLZnpwMzdVc1NqbVVPaU02V2tsOWd2d3NZaWU0cmVMOVUrNW1IU1IzUWxHUHJVSnI3RTc4dDdVNU5nTUVPYXBnU1dxT2NYUjBjKzJPWlFBZ2ZmTkplMWFLUFVTNEliclV0ZmF3clY3cjQzd3V6RUl6QjBNV0pyaVhVY3VpYlVtODQremZMUUJuSHhvRmYydEFjZnNqRnFCMDR3V2Z3VmdNRTFuaDBVbSt5T3E5eWJ6c3NNSzI1NjA4UGZUNHdLY3h3QnQvMHQwSU8zKytMTzgzSkwvQ0F4Z0lkOUZ2RmwwU3hyQnlvVVQ5V0NKNnVZWk8xU0hGNEZRVFF2NzNpVUxpU1JNN3dBbmIwMjl1TCtjMm0ra2M1dmRMSy9Tc3p5bzQxa1NwcG10UFNZU1luNEs1eXVNUjVKU3BaMEExQmJ1WFZ1WGtTbndPeEE4RHVrQ01sMzgvWGJQdUZORzJSbGNpbUN4RUR6OUEzcWswZmtnL0ptNFhXM3dKdW5XZFdGQjQ1blB5MkF3eGZjejdMY0JqUlpEZlBYNXlKNG9lM2lJZGpOTzJSbURlV3VwVnQ2QjVhaFc0Q2NWaGJOWTV6QTdXYmptWmx4TnY0eEh0RkJYcitzTys2SHc4dzZ6Z1hyQWM1MXBSVUd5VHVCTVN6aGhQb3hza1UxZTRWOGpFQm9YK0k0OGtJSnhEb1B4OEdmeHJvUlRaR29FSDZSQURNY1BwdmE0ZVJuT1Q3dGFUWEcwaHZtSU1YUjVDL05SREdpOG41SWxreVhiS2tZWmJVek5qRUd3U3ZHM0xYMjZBd0dMUUxoSTdXQ2NXeHFKaTlPR3ZzOWZGVk1laXg0dmkxMk8rWXFmaTExRUdLaUk0SEhaS09KMHNTMEY0aUtUN3RnZERMQWRIUkpiVmkxYml4NWpUL2pEVi8vVHJxT0xsdHBJVHQ2QlFFWndvaFIvbTdHSjUwdkhxRHFOWjNxOUE0WnRGSTAvZ2RjTGMwRlZicWxiajd3MC91bjBQOHBsTFJ5ell6bFdOeVN2UlgyeVRXTTNBSEVVa1B5WExyWDdTVHB6VDQwZWsvd3BIVGpOOFhjd0R6LzkzRW0rS0FhaGdreE96VjhUNzkySGFvcGxqYzZMMzVta0dMaUVnOFM1NVZMZkszSVpkYjY0VFAvWGFQaG1lcWdocjIramo5YkUvOVI1cHZnN3NEU2JoUUVkWThheEhnaXdqOExXWmJPaGQyRCs2VFU1b3FMTVJsMlZPdVUzNVlDeFBOQ3hDTDlVNVQ0MDl6MllJb1B1WlBGV09EMlkrcFN6TktKWHNINGFnQUZwcEFsbmcrcmJPMm5BczBid0dFUE9JejU1dFNTdHo0OS9MMWtDTjN5Tm5oZEh1VDJaWDVTRE1mUnBidWdiL3lkMWVqVi9MSnVrTWVIdCtmWmxPT2JvemdqVVQ3bXI0ZlUxZHBPVVoveituQmIyejN3ZSsxVFlUOGpNblBlQXozOWJzTGRsU2Q0dmlkc3VXQWM0RTF0UGQ0QjdSSVoyL1F4OHorV2xGVlNXcjVra04yTlV1VXVibE1iSUVSaW9pVW5qN0FKUDZ1YWMzL2tpWGRWY3I2bzF2dndGY2pKRXBoWXU0SzVkS0k0MmREMFRIWTc0NEhjV0xUNS91N3dVS2F0NkxSKzhNTWR5b1R3YzdSYVJpZFg5ZUU1d1ltalg3ajBqTDBwOC9OcDRhWWpzaWIyRHBQd1Y3cWc4NHRpb0tHZlVGbWwxN1VVNWxsZXQyWjJScGFxYzkvSjMzMEtXTDgvSkVocEN6dHZaWktjcFRMUGpIQzZCLzBVODNaRHhSbm5zeitQcmNubC96cjVPUWFEUWtzaHE3VVpCTUdCalVQaHRSU2YrTDhYVEM4dCsvM2ZnVDhTMkJtRVpkWTFBalF6ZGpNRkFvbXRoSXNvZ3A2NXRIZk1namlHSHlCaVFPUjZldHl1WDV2RHFNcHNpNTZLOC95L0o1ejJIeTVtcGIzQ3NubUI3UzlZaGliMlJMb0Q1UmJhM3NlWjZVdEo3U2E3ejdmSjFGL2d0TFhqSlRuZmVEZ2FJY1piOHVsVUMvZHZ3MlB6dVg1N1hQdjhoUEQxWGJ2L1RPdTUxdFFBdnQ2KzA4VjNON0FuMml3cWYrVTdtMitYcE5DWW1NWEtBNXd2YXJRYitaWGgrR1U1ZThOeTUzUDJUN3o5QjUrQXh0Z08xM21COFlZNzU2TWUrbU04NzlZS1ptNXBLOHBxU2VBTFRSVGxRR2hjM2Q3a3p1RkZLOHA1bGM2ZlA3a2xOQkluTlB6R3p0YkZyTmVnZVpseXpzWEttZWNqUUhobExLSEw0Wisrem5vSDkyL0dvM1ZnWm1kbzRzVVgzVmZtM2RtUDVYeUpQclkwM1ZxUFpIc3NMamp0LzZmcHRFNi9odkVXNzY5UVNWUTlNbEtpSUw5Wm43MnRqc2thdW42WGw1VGtSc2taeUdXMDhHRTQ5Wi9tV01rUWEvQytoeGRiV3BnZ0dRMFRqTWxUR2Z6dGJIQitzd1J6SHp5UnZNNk1icDZRdG5PN0szVU5ubXByWkFjb0JOeVI1OXBsdWVqQkF0SlpScTh2Z0svS2xnWnJaR3pNSEhQT1hXQXVqR3dpOExaNHg3NXNCQ3JHZlBkUDVuU25VMTJHa2MvZHgzSjhhK3UxT3FxM3ZtRXZXQStJK3RUaDFpT2tBSmlwK3g3UDA2V0dtb1d5bTNhWGxlRUFiNzJmYStOQ2tFWXRBYU1Zd0dHVUEwMVZnT1VPZnhpVCsxT2V2b045VHplb1hyWlU4VlNmOG5BNHJXK1dLdUVhOUpyRnVNRTRzUGNhK0I4bVhQTG5IV0k1cC9vaWV5MkhDeStiM016bUsxOVFkUDRlbk83S09TT0pwOVVEcUVxaFAxTEpydzJZdXRhZ3ZiZVVzNmpoR3BzREh3T2U5eG41endsdlZpOUdOSnFwTnNmNTR2ZGpqcnVSM1dtTlA0U3R3MllrN1cvejBWdldIcjhsei81WmFtQmZKVjdGekt3aVZ3MHR5MTAvQmM2NG01b21hQ3c1d2p5elFWQmtNU016d3gyMU9lL09UWDdHR1pJdWpuTlFDREtvTk4zYXZxRmNwY1hmNDQ3N1E1TGh4eUp2WFVneElxNnRuY3F2ZGNYT1IxL2cxSFJ2QS9YRWZzZ09tdCtjM3NrWUp4SkZuVHVZN3VuWXpJcHZVTmZ5UThGVTgyTFdwengrUjRZV21iR0RPVTNpV2pRM2xEclEraGRhaDRQblBhSzhHWjJrS3RwTWV6SGtQeDhSd3NDQTVDL3hNZlZORG1QK2MzNG45UDROVDkvWmt2ck81VVc1eGp6dER3N3pON3pCTnBBSHhNUmxUSzJMbUoveSswdzNuR2h2MXRQaC9XcDRhY1lZbUwxMHZlOXJIczBYUHN3WCtZSWtqRm9nTFVzOXE0amtHNDBRU3gyc1lqQTR3NS9lR1BpVXQ1SVkyM0pBOHVLZ1dyZlM4WkdxUHFTVFNFeWRncDA5d2daMmw5ZXpmN0VETllZQTJmNndQY21BaUdFNWpmSy93UmZLeVQ2SFk3aVdUN2xBS3hmSGFuc3lidGNIMHZ2dUYxS28yVDBHdzlMa0xSRFd3QmQ0SDRqaXo4azJCMC9aWTlIbk0wMlc5aVNtVWEvaTErcDV6Y24rNmlWaUQvOHI3K0YreUpjQlYvOEZIeldOd2xMdmJ6L083OTRGOTNPVkJ5bSt6KzQyNmt1NDhCRVRHTFE3MCtMSllOdG1nV0hJdFdtaUtFb1JnNFpidG9vUkU0cDJyNWNPdmlxcllYNW9wS21hR1JWSDRGRXRpTXlTU3hGRW0zWkdVeUQxTmlWeC9FZno1V2hyenVhbFBFZFRWR0hJSWkrR1hSYUFtWUFDTDlvdVQreVhycDRhK29lSE1aRVBLZTRvMktOcjJ4STBQNXJMNFJzNlRBMitrc3RUM05qYkJvQ3JaejB5dEtLY1Q1ZHpVU09yWmE1ZmkwakNCdEpYdXlWamlPSlBHODN4WmF6ZVNSQkxDa3pETDFEMEdtMWxESXdmemhKWXVNNlFGYmF3ZXl0YUI4cEFmaWxONUJ6U1c0TnJRNTY1QjJOWkVFSWROcmZLbFNxMU9WQXgvV1hiOVVRaDQxeENuSHVUY0w0Q2IxNTR2UzV6NURTMU5sOUlhVEM3UU55a2RpNjFLdUdkTDl2Z3NLYVZSODI5TDVWNVJwNXFpVGg5VWRUb25CeFVWQnozTWRQVkE1OHVpYjB0RlhUSHE4bjR6bHBYbGJUclRpbEp2bjkwYnVuekE2dGo4ekd4V2QrUDdGV3QvVzIyYTN6TTExck8wL1doNnA4cUxGWnFUZWQxR1h6UnR4RXFpN0lHQ3hyYm94VEEvbHAwYjRjYUY0dmhRdE9yZ01RLzBlckdoZW1PamV6WjFsaXloNVV3dnJvbTNGTThpbFJHclBCaEt2RTBrY1pRWDlGK1RNTHFXcnNCcXBtd2xNcFk4ZHd6RFVXTGVSMThNa1hjZGJaeUMyNWp5Q3RrOWl2SlJkYmlGejUvQ2N4dTdobmo3aGFvWklrOURTWndPcFFudndZRk1RM3FCU2UyeVhFSlF0TVhxVVZWVStVSFpvTG1pM1dhQ0c2MmxmTzRXSmZybFp2MFVsMFVyQkFoVXJLSVlrSmNsTlNzOEQ5SnVVT09kMlBScFc1VE5qYkg1d004WHoxQityRnBoTUE1L253elVXdzkrVmdZTzFuKzRERlJ0UUNGKzN5djVZWFE2ZjhXbCsvMDlNUWJkQ1c3VVBPeEZkYWt1NVNOcVYxQUdCNG9IeEVkM0p2RFl0dERXT202YzBlWDJNcVdIK1lId0JVMmhUS3FTWnhJeWYzV3hMUEJEUTJNVG9XaTc3end3cHpwd3BObGUwbm1nVENsenVoeTFaWTdhcGdLR2ZTeVkydVBPenNsaFo1NDBVVWphbHl5bmlhcG5jSzVMWlhCVnRyd1FXVHFXTFZWMG9vZDlZZHVIaUM1SmJWMW1pTzNWaG1FcEU0WllPMHhHdzdxbk91UUl5ME5GbDBxdkRSUVBoZ29MeDN3T3VCZ1pBNFhTWURKRlpxRG1kVmNjRE95c2JadG5HTGZQSFQ2aTNicEFWdzgyTGIwai9FRGEyN1F4USthUFhaL2kwRHo3ZUVBWUN6bDFRM1ZXWjBrNjFrOWZIZ1NldXJWTC9wTjAxd3JmSm50WEVkWEEwTlhFRnZEOThjWVVFYm1IOWNxeUdlcTZEN2Z4Snl5VHN5V1Q0bmZ4djdYLzNRZmh0dnJkY2IvMVAvOUpDUGV1MFhBRk1YL3YzZGR1dDlHWUQzRVppOWJsd2k4NzNYYUQveVNOaVJ0YjhFNTVvRjdwcTR3YU9oTHJYWTFwN29XcEw3MWYxaTVVekR1RnhiZGd6cWFHTmlUN2RWb1RKUVhDeGpXQzhjSFVhQmxqSVFmVVJpNExlb2w4N1VBeG0rQ1g3QWRhTy9Ud09ad2FCRjcxZ0czNGc4Q3ZpQnhSSDdmMDgwcmJ0b09CR21DZmtoeG1TUHk0OUxTVmoyV2lOMWpTcXkzWEtzZDJLcTVzb3lxK3A4L1RxbFdsV05xcm50V2JyVmNsbm1lNjRwa0QrZUU4L3JIK1A4RjlGWjZRdmRweG1LWXRTaG9jRDlJcGRwYzBCQ3FQN1pMY3NxVVU4Mm9SM2pSYWU1b3A4b0pQdFFXUlpXT2k1SFloUXl0T1pVcmZpZnBkV04vS3lPajJOY28yRCtLYndFRGxMT3p2YzhRbnd2cVNxVUkybjUrYjJwaWoraFFkc08wdnhxQjdxMnEzWkI1bitLb1dLai91SEJ3TGlFT0VkVC9sMGVzMnZsZ1lJRElmaFVPTU5DWmJneFRiMEZEOWEycERncGNpUGdscjJ6UjhhaXp4YzRpeEpxcGZ5R051YW9UL1UxTlVPV3gvb0tqbXM4RTh0N0NmUUhhbVU5WmdNRVV6VGIybU1sT1hyZU1obDBXYmpDZE5aSThjNW5teTFISHRMb0tWQ3dzN0RISitkd3pqQ3h3ZTQ1K1RiWFVLZTFUUnA1am56dVpPbDV1a3lSN3JlN2QrQUJybHMycExFdmNvVTdUbG5zaHljNXl6dEh2QS9sMGROL2Z6Ykw2a09wVHdXV0duelM0ZGZCWS92QStEY1dad2JpYmRZWDlmTG16Nkp4ZFU2WWJLeG5meGJubFlhaU9XZnRJbSs2WHRPWCtZRk1IYitMZ2xDcDFENlFOUXZNQlF4V090S0EySjMwanRoVi95eFBGNVd1WjNHNW5MWVRqeitUVWM0SHRSWFBodFhtdjdrY3BlbERrQjRuTnlqM1VZcU15VHVaVjZHY3NqOWF1T0IxUXFoMW83MjhFZ0tibFRtaCszZGZsei9ObzRUQzg0MmhvNFVQMloxdHFlcGJaTndNbGNpcll6N0FOajNqRjFMNFlENVVCOUVoNzdNRzA5Yy9ZUVBNb0g1N1pub0g1RXJmUnJZK295aG5OVDRzT3N4VzU0cnVWWk1GL1g4Mnl1dlpSdVJYNXBVaDNCZFN4RmU3bmVLV01hSEZNZnQvTVNXYzhXNWVoWUR0MzhSckVWMEpBYzNOek9PNVU3TkUvbUo3Uzg2R0JBaW9kelM4ZkhIRkRIUVljTk82RFJHSzJTNitEMCtjclBwSHljMWVUaS9EWWx4emlMNUFVS1hkVE03UkZhN2V0MjlpSStvd2NYcW9WL2RySmxTRk1mdkFndkdKYWFUMFYweEczYXBsTXozbFRjd29mdTNPYmx1ZTA0c0gvY3RSVU1HRWpZcjJodDNYQWJuY2xoeEJpR3JuRWVoTE5MU0wrd05ZWHlFc3hITmQrUExlakpIZzluSmY1NHk2NmNPU3kxc0MwczVOeGFEclE0VDRqU3lGVlB0bmM0Y3hEdFoyWWtDWFlMdDdETmQ0MThHUFVKdXJkRnFIVGtMeXlick5OQUwvejFCbjdaWXd4azZ5UVhsMWErZUNPWHFwVHRRS2QrZG1oU1hxNHRoUnVpbXRrQk9aRFZBMkhzWFRMWHMwdTdBOFdEWElyampvemFUNWJzMWovVFdqNEhWeDR1L1VSNTFMSlp0dFhoejFWTEhKU0c5YVhYZXB3Z3U5S0VISVQ5MFNqdG5mREhXNTFMR3RYUEtpcnN0a3pqL3BlM294TmJTdTNuVWFjMXpwRXJXODg1WWx2cUphaHVDNDhIV3h4blRuQlh5ZDViTFkzVzh0amwxaFJsL0o3V1lUaFp0ajZaVDdQbHUvQkp5STdiWkhuM2VLaDdJOCtNeDFod2p5d2NLQWh1MElMeXpKdVZNWlF3SFdaYXEzMnZndWZUR2s1VUg0Z0kyeUNzTit2dHh0WGZNeDNQaFp3ZDFwbzNiWHMrNGZWYTY3a3hxWjRwNlpnVjhTK1N4bW01WHBDUk5ZSXhFODM4VWZPYXNIbEwyZmpKZHVyU2ZwenNsUDk4M21ESkwrbXp6V1hyMmpJcGxqMEdoaXJsbjdzeFdSdUFPYjhHSXFMbFVpVGZLNU40Qy9QVlBkYlRpT3BwNnVPUDE1amVNRC9uRDU3SVlYbWFRTzBrRCtYbzR4UXR1TVdhSS9FeFZyUVYrNWpuS0gxTWdXZGdNQTdNQUsyUHZoYmhXYmZVNDJkd1IwOW9LTnV3eFNkOXpVNGNxbmVQOXpOTnpZekJkQWduWGJqOGhiWXlVQmxhWW9IbFowVG5wTTkzWlZ1ZEtiRGx0WllQMG8ySFpvdm1zTXZmSTNTZzVRTWtCMHZhU1Z1dG5UUW0xbVZFNlVCT0c2RTZmTUNYNTZ4VzEyY0MwYmtJQkhMdTZEeGpDSHNzdHg0Y3lJdzFtZTVzelk2TVorQitXY3NrT3VlL0hrOUdXZGI1cU5IeW5wdFZqS2x1eUx6R1UyU0tLSy95QVhlamZkRSs4RkVTcGp3UUgzZDJzUzJacGN0MDNjTGZ1eEk2dmlmNXo4eUxVNGVGUDVpRGdVbExLOFFVT2N1T2NzYlNYeW55TFJaZHh5dlhwekxwRHN2b2NHY0wvTm9TMWJWVnRiU1hzU1hLTU4xTURqR3paK0E2T1VHRXhtaUxzc3lvNUJOeWVvZkFlN2F1UkdBd2plM0p4bTJmNkdIVVdxaEtHL3VjdkRiSEtIS2FaVjRWei9zTnZ2SGNxUzBuZERuRytMVzJMdjd6WXNtMzIrc0NzbFZ1amVmTE5ucHlTTGpBZFBzdEo2MVZhb2NQMi9WTTZldVJVelB1VFczbGFvUHF0QTZ5cnFjdjNXeld1dmJsRi92NXY3RTlxc3UzYkoyRDJZSExqck0zZjcwZjhkbzR0SWtibUovRlJXRUg1SFAzVTBNanZQaHdyc1hwbEM5cDNOVDJvMDF0eUwyMS8vd0xXNGRPZUtScXg5RzY1MWJlK3pYeFlxUGxaZys0UlhOTHVqUDNxN2FiWEs2dmdhZUc5cGpNTkd3MzJHS05ndDBiR3NwaHpzYkFaejJDQ3p3ZXgzcFFZTDNtVm0zU0UxdmxkZmpsTHp3LzhxeXYycEY3cnBYeE44c3VxeHpSWSt5UXZDcktKUEhPWFJTNHVOZkcreWZ5Ymk4OFM3WFcva0g5d3puZ3F2VUpIRk9scEp4ZjZNdzNkN2NoWUppRVVXUDd1R1BzREhldmdyT3hsWWxjeXhXMjlHWnp5NU9PTFFhZXNFSHRzMWRQNCtlaVRIOVZuaE43ZUJPNWVMNUUvZ1JYMWIyek1LcC9ERFpMRzhiMlhUMnVsMC9zRDNsR2FKZDJ2elc4SkM1UEFEZmV3SHkwQjV4Q2MxWDY0dG44VE5lWnRLZDVwOWI1dDIrY1EzbGhlWGtKZTFrZVR1dHFWaVBPMUtjNTlsY0wvNzM2RGM4Y3hYTDBzZXZiRi9JZXBnV3QxVm00aG1ZeXBpNlYyMmNWVzVnWDk1Zlh6YlgzWWsyMGEwMjh0YjdaT2RiRGJmVDMvbzkvL3JqcTAvT3VHa2VUdGM5UStuT25qLzA0ZTdMWWY5NUJZdityVHdDNy9NQ3YxeC9VZGVIcFhQV3p0VTdPMHdxczBIL0FQMjc2Nzk2OSt4NytUMjlKampLNzZWSGUrTkI5Rk9QMzBJcDkxZGttZmhUZTlIYnM5eER6NzAxdlNaLzVIZ1pPYXRsV2F0MThEM3M5VEtGeVFQd2JXY0JCQ2JuVjYza09DdDRuM2dmb1dkdTAvbFN2WjhYeCswMEduRzNvcEU3eTNvOCt0RWZxZXNZUGs5UUs0YlBQQlZab3VZNzlEdVEzdlltRGd1TnpsZmppeDdaWm1QcjFyeWF4QXduc2FSNDdONzBLMGZoUzRpQUhwdEgyNXEwblFOaTlHUFZkZ1ZETVQvUUt2WC9Ud3p4ZFhTbVkvNlozTDN3ckx4NzVzWHo0T2FvZkpicUQ4RlljSngrTzFQOWNQZnNmelFDOW5oV0dVVW9Fc0p3RWtiRG1lK25XZDExbm05ejAvdSs3RXYvL0tQL285ZjU5L0xQWCs5NS8yRWJCOS81TjR5cStqakg3dlgvenZXVVp2dmV2Mms5aTFKQW5DN05FcGZ4N3YvN2NqNnZXVjMwSDJWaDVreGN4Wjc4dlNmK2UvSUxWUVkzL1lQNzVuc3l5UHVLUDhzOS8xdVNpMUl3M1BiWkRKZ0lyaGQ2c3pnQXZvL05MS1YzQ1gzNnV6b2Y0UDlUODlKUDg5M0xZWHM2SGwvRGlTL214MTZ1UWovODdFcTAyelZKcjdCMVE1d0ZDMG5Lc2ttZHE5K3VLcHoxVVhRR1YvMVhmL25haWthb2h1elFUSVUzZEEyaDlzM0lHYms2R0l4OXF3OUkwNjYyWENndC9PcFNWZWplOUR5LzdRdjNNeTJxazR0RExtK2NWSy9FMnFZL1VvVm5KM1NiZGozcVd4emNGOHVwL2g2V2xibkl4alRTcXNFM1IwZEtNeGIzNkJHcDhUVTlxTFljaUZsejBDOGhkLzhnUzJkYW5KTC9Zank1SDJEb1A1ZmRMdjUwQWtHNnQxSEh6QmdpVVN3cFJKbjh2bTQvMWV0aEExQmoycWFtM0psOTgrSGlIQkNFM3ZRcjU1VjBuM0hVb2pPLzl6MS92NWJ2N2Z5M3ZiNVg3MWJkL2ZWTytUdStFKzZabElTYzg0NGV0T0taM0t2dFhlaTJGdjBUNFZ2Q3MwSFdlbHhLaW5oSXl3UTRwNmJDNlJ5bXA0ZWEvUTBwUUZHMnltRVlNeFdSUUJDMTAwOE1oeHZPNEprRk1CNWJwOVROWVZ2RE4veEovdjFROHJWaW5MWENsdjE1S2VNM25MbTFJV3FHakZzemQ5SEFzVi9pVFQ0V0RONzB5R3Z3ZTlxLzZPMG9vRW9qV3N4RFEyL3BKR3NWZS84Zi9Dd0FBLy8raHFZVU1wYWNBQUE9PQ==
type: helm.sh/release.v1

Decoded json:

{
  "name": "dotnet",
  "info": {
    "first_deployed": "2023-02-14T23:49:12.655951052+01:00",
    "last_deployed": "2023-02-14T23:49:12.655951052+01:00",
    "deleted": "",
    "description": "Install complete",
    "status": "deployed",
    "notes": "\nYour .NET app is building! To view the build logs, run:\n\noc logs bc/dotnet --follow\n\nNote that your Deployment will report \"ErrImagePull\" and \"ImagePullBackOff\" until the build is complete. Once the build is complete, your image will be automatically rolled out."
  },
  "chart": {
    "metadata": {
      "name": "dotnet",
      "version": "0.0.1",
      "description": "A Helm chart to build and deploy .NET applications",
      "keywords": [
        "runtimes",
        "dotnet"
      ],
      "apiVersion": "v2",
      "annotations": {
        "chart_url": "https://github.com/openshift-helm-charts/charts/releases/download/redhat-dotnet-0.0.1/redhat-dotnet-0.0.1.tgz"
      }
    },
    "lock": null,
    "templates": [
      /* removed */
    ],
    "values": {
      "build": {
        "contextDir": null,
        "enabled": true,
        "env": null,
        "imageStreamTag": {
          "name": "dotnet:3.1",
          "namespace": "openshift",
          "useReleaseNamespace": false
        },
        "output": {
          "kind": "ImageStreamTag",
          "pushSecret": null
        },
        "pullSecret": null,
        "ref": "dotnetcore-3.1",
        "resources": null,
        "startupProject": "app",
        "uri": "https://github.com/redhat-developer/s2i-dotnetcore-ex"
      },
      "deploy": {
        "applicationProperties": {
          "enabled": false,
          "mountPath": "/deployments/config/",
          "properties": "## Properties go here"
        },
        "env": null,
        "envFrom": null,
        "extraContainers": null,
        "initContainers": null,
        "livenessProbe": {
          "tcpSocket": {
            "port": "http"
          }
        },
        "ports": [
          {
            "name": "http",
            "port": 8080,
            "protocol": "TCP",
            "targetPort": 8080
          }
        ],
        "readinessProbe": {
          "httpGet": {
            "path": "/",
            "port": "http"
          }
        },
        "replicas": 1,
        "resources": null,
        "route": {
          "enabled": true,
          "targetPort": "http",
          "tls": {
            "caCertificate": null,
            "certificate": null,
            "destinationCACertificate": null,
            "enabled": true,
            "insecureEdgeTerminationPolicy": "Redirect",
            "key": null,
            "termination": "edge"
          }
        },
        "serviceType": "ClusterIP",
        "volumeMounts": null,
        "volumes": null
      },
      "global": {
        "nameOverride": null
      },
      "image": {
        "name": null,
        "tag": "latest"
      }
    },
    "schema": "removed",
    "files": [
      {
        "name": "README.md",
        "data": "removed"
      }
    ]
  },
  "config": {
    "build": {
      "enabled": true,
      "imageStreamTag": {
        "name": "dotnet:3.1",
        "namespace": "openshift",
        "useReleaseNamespace": false
      },
      "output": {
        "kind": "ImageStreamTag"
      },
      "ref": "dotnetcore-3.1",
      "startupProject": "app",
      "uri": "https://github.com/redhat-developer/s2i-dotnetcore-ex"
    },
    "deploy": {
      "applicationProperties": {
        "enabled": false,
        "mountPath": "/deployments/config/",
        "properties": "## Properties go here"
      },
      "livenessProbe": {
        "tcpSocket": {
          "port": "http"
        }
      },
      "ports": [
        {
          "name": "http",
          "port": 8080,
          "protocol": "TCP",
          "targetPort": 8080
        }
      ],
      "readinessProbe": {
        "httpGet": {
          "path": "/",
          "port": "http"
        }
      },
      "replicas": 1,
      "route": {
        "enabled": true,
        "targetPort": "http",
        "tls": {
          "enabled": true,
          "insecureEdgeTerminationPolicy": "Redirect",
          "termination": "edge"
        }
      },
      "serviceType": "ClusterIP"
    },
    "image": {
      "tag": "latest"
    }
  },
  "manifest": "---\n# Source: dotnet/templates/service.yaml\napiVersion: v1\nkind: Service\nmetadata:\n  name: dotnet\n  labels:\n    helm.sh/chart: dotnet\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n    app.kubernetes.io/managed-by: Helm\n    app.openshift.io/runtime: dotnet\nspec:\n  type: ClusterIP\n  selector:\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n  ports:\n    - name: http\n      port: 8080\n      protocol: TCP\n      targetPort: 8080\n---\n# Source: dotnet/templates/deployment.yaml\napiVersion: apps/v1\nkind: Deployment\nmetadata:\n  name: dotnet\n  labels:\n    helm.sh/chart: dotnet\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n    app.kubernetes.io/managed-by: Helm\n    app.openshift.io/runtime: dotnet\n  annotations:\n    image.openshift.io/triggers: |-\n      [\n        {\n          \"from\":{\n            \"kind\":\"ImageStreamTag\",\n            \"name\":\"dotnet:latest\"\n          },\n          \"fieldPath\":\"spec.template.spec.containers[0].image\"\n        }\n      ]\nspec:\n  replicas: 1\n  selector:\n    matchLabels:\n      app.kubernetes.io/name: dotnet\n      app.kubernetes.io/instance: dotnet\n  template:\n    metadata:\n      labels:\n        helm.sh/chart: dotnet\n        app.kubernetes.io/name: dotnet\n        app.kubernetes.io/instance: dotnet\n        app.kubernetes.io/managed-by: Helm\n        app.openshift.io/runtime: dotnet\n    spec:\n      containers:\n        - name: web\n          image: dotnet:latest\n          ports:\n            - name: http\n              containerPort: 8080\n              protocol: TCP\n          livenessProbe:\n            tcpSocket:\n              port: http\n          readinessProbe:\n            httpGet:\n              path: /\n              port: http\n          volumeMounts:\n      volumes:\n---\n# Source: dotnet/templates/buildconfig.yaml\napiVersion: build.openshift.io/v1\nkind: BuildConfig\nmetadata:\n  name: dotnet\n  labels:\n    helm.sh/chart: dotnet\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n    app.kubernetes.io/managed-by: Helm\n    app.openshift.io/runtime: dotnet\nspec:\n  output:\n    to:\n      kind: ImageStreamTag\n      name: dotnet:latest\n  source:\n    type: Git\n    git:\n      uri: https://github.com/redhat-developer/s2i-dotnetcore-ex\n      ref: dotnetcore-3.1\n  strategy:\n    type: Source\n    sourceStrategy:\n      from:\n        kind: ImageStreamTag\n        name: dotnet:3.1\n        namespace: openshift\n      env:\n        - name: \"DOTNET_STARTUP_PROJECT\"\n          value: \"app\"\n  triggers:\n    - type: ConfigChange\n---\n# Source: dotnet/templates/imagestream.yaml\napiVersion: image.openshift.io/v1\nkind: ImageStream\nmetadata:\n  name: dotnet\n  labels:\n    helm.sh/chart: dotnet\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n    app.kubernetes.io/managed-by: Helm\n    app.openshift.io/runtime: dotnet\nspec:\n  lookupPolicy:\n    local: true\n---\n# Source: dotnet/templates/route.yaml\napiVersion: route.openshift.io/v1\nkind: Route\nmetadata:\n  name: dotnet\n  labels:\n    helm.sh/chart: dotnet\n    app.kubernetes.io/name: dotnet\n    app.kubernetes.io/instance: dotnet\n    app.kubernetes.io/managed-by: Helm\n    app.openshift.io/runtime: dotnet\nspec:\n  to:\n    kind: Service\n    name: dotnet\n  port:\n    targetPort: http\n  tls:\n    termination: edge\n    insecureEdgeTerminationPolicy: Redirect\n",
  "version": 1
}

This is a clone of issue OCPBUGS-10864. The following is the description of the original issue:

Description of problem:

APIServer service not selected correctly for PublicAndPrivate when external-dns isn't configured. 
Image: 4.14 Hypershift operator + OCP 4.14.0-0.nightly-2023-03-23-050449

jiezhao-mac:hypershift jiezhao$ oc get hostedcluster/jz-test -n clusters -ojsonpath='{.spec.platform.aws.endpointAccess}{"\n"}'
PublicAndPrivate

    - lastTransitionTime: "2023-03-24T15:13:15Z"
      message: Cluster operators console, dns, image-registry, ingress, insights,
        kube-storage-version-migrator, monitoring, openshift-samples, service-ca are
        not available
      observedGeneration: 3
      reason: ClusterOperatorsNotAvailable
      status: "False"
      type: ClusterVersionSucceeding

services:
  - service: APIServer
   servicePublishingStrategy:
    type: LoadBalancer
  - service: OAuthServer
   servicePublishingStrategy:
    type: Route
  - service: Konnectivity
   servicePublishingStrategy:
    type: Route
  - service: Ignition
   servicePublishingStrategy:
    type: Route
  - service: OVNSbDb
   servicePublishingStrategy:
    type: Route

jiezhao-mac:hypershift jiezhao$ oc get service -n clusters-jz-test | grep kube-apiserver
kube-apiserver            LoadBalancer  172.30.211.131  aa029c422933444139fb738257aedb86-9e9709e3fa1b594e.elb.us-east-2.amazonaws.com  6443:32562/TCP         34m
kube-apiserver-private        LoadBalancer  172.30.161.79  ab8434aa316e845c59690ca0035332f0-d818b9434f506178.elb.us-east-2.amazonaws.com  6443:32100/TCP         34m
jiezhao-mac:hypershift jiezhao$

jiezhao-mac:hypershift jiezhao$ cat hostedcluster.kubeconfig | grep server
  server: https://ab8434aa316e845c59690ca0035332f0-d818b9434f506178.elb.us-east-2.amazonaws.com:6443
jiezhao-mac:hypershift jiezhao$

jiezhao-mac:hypershift jiezhao$ oc get node --kubeconfig=hostedcluster.kubeconfig 
E0324 11:17:44.003589   95300 memcache.go:238] couldn't get current server API group list: Get "https://ab8434aa316e845c59690ca0035332f0-d818b9434f506178.elb.us-east-2.amazonaws.com:6443/api?timeout=32s": dial tcp 10.0.129.24:6443: i/o timeout

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1.Create a PublicAndPrivate cluster without external-dns
2.access the guest cluster (it should fail)
3.

Actual results:

unable to access the guest cluster via 'oc get node --kubeconfig=<guest cluster kubeconfig>', some guest cluster co are not available

Expected results:

The cluster is up and running, the guest cluster can be accessed via 'oc get node --kubeconfig=<guest cluster kubeconfig>'

Additional info:

 

 

Description of problem:

cloud-network-config-controller pod crashloops in proxy deployments as it tries to reach Openstack keystone API directly (not through the proxy) and there is no connectivity.

NAMESPACE                                          NAME                                                         READY   STATUS             RESTARTS          AGE
openshift-cloud-network-config-controller          cloud-network-config-controller-c4867b748-vlq9h              0/1     CrashLoopBackOff   158 (2m10s ago)   13h

$ oc -n openshift-cloud-network-config-controller logs -p cloud-network-config-controller-c4867b748-vlq9h
W0927 05:48:18.678947       1 client_config.go:617] Neither --kubeconfig nor --master was specified.  Using the inClusterConfig.  This might not work.
I0927 05:48:18.680269       1 leaderelection.go:248] attempting to acquire leader lease openshift-cloud-network-config-controller/cloud-network-config-controller-lock...
I0927 05:48:26.754377       1 leaderelection.go:258] successfully acquired lease openshift-cloud-network-config-controller/cloud-network-config-controller-lock
I0927 05:48:26.755413       1 openstack.go:121] Custom CA bundle found at location '/kube-cloud-config/ca-bundle.pem' - reading certificate information
F0927 05:48:28.233519       1 main.go:101] Error building cloud provider client, err: Get "https://10.46.44.10:13000/": dial tcp 10.46.44.10:13000: connect: no route to host
goroutine 51 [running]:
k8s.io/klog/v2.stacks(0x1)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:860 +0x8a
k8s.io/klog/v2.(*loggingT).output(0x37696c0, 0x3, 0x0, 0xc000636000, 0x1, {0x2cbcbd8?, 0x1?}, 0xc000438400?, 0x0)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:825 +0x686
k8s.io/klog/v2.(*loggingT).printfDepth(0x37696c0, 0x237798a?, 0x0, {0x0, 0x0}, 0x7fff81041af7?, {0x23a20d0, 0x2d}, {0xc00052c050, 0x1, ...})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:630 +0x1f2
k8s.io/klog/v2.(*loggingT).printf(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:612
k8s.io/klog/v2.Fatalf(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:1516
main.main.func1({0x26e5638, 0xc00016c040})
        /go/src/github.com/openshift/cloud-network-config-controller/cmd/cloud-network-config-controller/main.go:101 +0x26d
created by k8s.io/client-go/tools/leaderelection.(*LeaderElector).Run
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:211 +0x11bgoroutine 1 [select]:
k8s.io/apimachinery/pkg/util/wait.BackoffUntil(0xc00052bb60?, {0x26cee20, 0xc000581740}, 0x1, 0xc00052bb60)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:167 +0x135
k8s.io/apimachinery/pkg/util/wait.JitterUntil(0xc00016c080?, 0x60db88400, 0x0, 0x20?, 0x7fea470ec108?)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:133 +0x89
k8s.io/apimachinery/pkg/util/wait.Until(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:90
k8s.io/client-go/tools/leaderelection.(*LeaderElector).renew(0xc0000a8120, {0x26e5638?, 0xc00016c040?})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:268 +0xd0
k8s.io/client-go/tools/leaderelection.(*LeaderElector).Run(0xc0000a8120, {0x26e5638, 0xc00025fcc0})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:212 +0x12f
k8s.io/client-go/tools/leaderelection.RunOrDie({0x26e5638, 0xc00025fcc0}, {{0x26e7430, 0xc00062afa0}, 0x1fe5d61a00, 0x18e9b26e00, 0x60db88400, {0xc00065e630, 0xc000634810, 0x0}, ...})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:226 +0x94
main.main()
        /go/src/github.com/openshift/cloud-network-config-controller/cmd/cloud-network-config-controller/main.go:86 +0x450

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-26-050728

How reproducible:

Always

Steps to Reproduce:

1. Install OCP with proxy

Actual results:

Bootstrap failure and pod crashloop

Expected results:

Successful installation

Additional info:

Please find the must-gather here.

This bug is a backport clone of [Bugzilla Bug 2073220](https://bugzilla.redhat.com/show_bug.cgi?id=2073220). The following is the description of the original bug:

Description of problem:

https://docs.openshift.com/container-platform/4.10/security/audit-log-policy-config.html#about-audit-log-profiles_audit-log-policy-config

Version-Release number of selected component (if applicable): 4.*

How reproducible: always

Steps to Reproduce:
1. Set audit profile to WriteRequestBodies
2. Wait for api server rollout to complete
3. tail -f /var/log/kube-apiserver/audit.log | grep routes/status

Actual results:

Write events to routes/status are recorded at the RequestResponse level, which often includes keys and certificates.

Expected results:

Events involving routes should always be recorded at the Metadata level, per the documentation at https://docs.openshift.com/container-platform/4.10/security/audit-log-policy-config.html#about-audit-log-profiles_audit-log-policy-config

Additional info:

This is a clone of issue OCPBUGS-6049. The following is the description of the original issue:

Description of problem:

We show the UpdateInProgress component (the progress bars) when the cluster update status is Failing, UpdatingAndFailing, or Updating.  The inclusion of the Failing case results in a bug where the progress bars can display when an update is not occurring (see attached screenshot).  

Steps to Reproduce:

1.  Add the following overrides to ClusterVersion config (/k8s/cluster/config.openshift.io~v1~ClusterVersion/version)

spec:
  overrides:
    - group: apps
      kind: Deployment
      name: console-operator
      namespace: openshift-console-operator
      unmanaged: true    
    - group: rbac.authorization.k8s.io
      kind: ClusterRole
      name: console-operator
      namespace: ''
      unmanaged: true
2.  Wait for ClusterVersion changes to roll out.
3.  Visit /settings/cluster and note the progress bars are present and displaying 100% but the cluster is not updating

Actual results:

Progress bars are displaying when not updating.

Expected results:

Progress bars should not display when updating.

This is a clone of issue OCPBUGS-1427. The following is the description of the original issue:

Description of problem:

Jump looks the worst on gcp, but looking closer Azure and AWS both jumped as well just not as high.

Disruption data indicates that the image registry on GCP was averaging around 30-40 seconds of disruption during an upgrade, until Aug 27th when it jumped to 125-135 seconds and has remained there ever since.

We see similar spikes in ingress-to-console and ingress-to-oauth. NOTE: image registry backend is also behind ingress, so all three are ingress related disruption.

https://datastudio.google.com/s/uBC4zuBFdTE

These charts show the problem on Aug 27 for registry, ingress to console, and ingress to oauth.

sdn network type appears unaffected.

Something merged Aug 26-27 that caused a significant change for anything behind ingress using ovn on gcp.

Description of problem:

Currently when installing Openshift on the Openstack cluster name length limit is allowed to  14 characters.
Customer wants to know if is it possible to override this validation when installing Openshift on Openstack and create a cluster name that is greater than 14 characters.

Version : OCP 4.8.5 UPI Disconnected 
Environment : Openstack 16 

Issue:
User reports that they are getting error for OCP cluster in Openstack UPI, where the name of the cluster is > 14 characters.

Error events :
~~~
fatal: [localhost]: FAILED! => {"changed": true, "cmd": ["/usr/local/bin/openshift-install", "create", "manifests", "--dir=/home/gitlab-runner/builds/WK8mkokN/0/CPE/SKS/pipelines/non-prod/ocp4-openstack-build/ocpinstaller/install-upi"], "delta": "0:00:00.311397", "end": "2022-09-03 21:38:41.974608", "msg": "non-zero return code", "rc": 1, "start": "2022-09-03 21:38:41.663211", "stderr": "level=fatal msg=failed to fetch Master Machines: failed to load asset \"Install Config\": invalid \"install-config.yaml\" file: metadata.name: Invalid value: \"sks-osp-inf-cpe-1-cbr1a\": cluster name is too long, please restrict it to 14 characters", "stderr_lines": ["level=fatal msg=failed to fetch Master Machines: failed to load asset \"Install Config\": invalid \"install-config.yaml\" file: metadata.name: Invalid value: \"sks-osp-inf-cpe-1-cbr1a\": cluster name is too long, please restrict it to 14 characters"], "stdout": "", "stdout_lines": []}
~~~

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

 

Actual results:

Users are getting error "cluster name is too long" when clustername contains more than 14 characters for OCP on Openstack

Expected results:

The 14 characters limit should be change for the OCP clustername on Openstack

Additional info:

 

This is a clone of issue OCPBUGS-9968. The following is the description of the original issue:

This is a clone of issue OCPBUGS-8692. The following is the description of the original issue:

Description of problem:

In hypershift context:
Operands managed by Operators running in the hosted control plane namespace in the management cluster do not honour affinity opinions https://hypershift-docs.netlify.app/how-to/distribute-hosted-cluster-workloads/
https://github.com/openshift/hypershift/blob/main/support/config/deployment.go#L263-L265

These operands running management side should honour the same affinity, tolerations, node selector and priority rules than the operator.
This could be done by looking at the operator deployment itself or at the HCP resource.

multus-admission-controller
cloud-network-config-controller
ovnkube-master

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Create a hypershift cluster.
2. Check affinity rules and node selector of the operands above.
3.

Actual results:

Operands missing affinity rules and node selecto

Expected results:

Operands have same affinity rules and node selector than the operator

Additional info:

 

Description of problem:

With "createFirewallRules: Enabled", after successful "create cluster" and then "destroy cluster", the created firewall-rules in the shared VPC are not deleted.

Version-Release number of selected component (if applicable):

$ ./openshift-install version
./openshift-install 4.12.0-0.nightly-2022-09-28-204419
built from commit 9eb0224926982cdd6cae53b872326292133e532d
release image registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc
release architecture amd64

How reproducible:

Always

Steps to Reproduce:

1. try IPI installation with "createFirewallRules: Enabled", which succeeded
2. try destroying the cluster, which succeeded
3. check firewall-rules in the shared VPC 

Actual results:

After destroying the cluster, its firewall-rules created by installer in the shared VPC are not deleted.

Expected results:

Those firewall-rules should be deleted during destroying the cluster.

Additional info:

$ gcloud --project openshift-qe-shared-vpc compute firewall-rules list --filter='network=installer-shared-vpc'
NAME                                NETWORK               DIRECTION  PRIORITY  ALLOW                                                    
                                                                                                 DENY  DISABLED
ci-op-xpn-ingress-common            installer-shared-vpc  INGRESS    60000     tcp:6443,tcp:22,tcp:80,tcp:443,icmp                      
                                                                                                       False
ci-op-xpn-ingress-health-checks     installer-shared-vpc  INGRESS    60000     tcp:30000-32767,udp:30000-32767,tcp:6080,tcp:6443,tcp:226
24,tcp:32335                                                                                           False
ci-op-xpn-ingress-internal-network  installer-shared-vpc  INGRESS    60000     udp:4789,udp:6081,udp:500,udp:4500,esp,tcp:9000-9999,udp:
9000-9999,tcp:10250,tcp:30000-32767,udp:30000-32767,tcp:10257,tcp:10259,tcp:22623,tcp:2379-2380        FalseTo show all fields of the firewall, please show in JSON format: --format=json
To show all fields in table format, please see the examples in --help.
$ 
$ yq-3.3.0 r test2/install-config.yaml platform
gcp:
  projectID: openshift-qe  
  region: us-central1
  computeSubnet: installer-shared-vpc-subnet-2
  controlPlaneSubnet: installer-shared-vpc-subnet-1
  createFirewallRules: Enabled
  network: installer-shared-vpc
  networkProjectID: openshift-qe-shared-vpc
$ 
$ yq-3.3.0 r test2/install-config.yaml metadata
creationTimestamp: null
name: jiwei-1013-01
$ 
$ openshift-install create cluster --dir test2
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json"
INFO Consuming Install Config from target directory
INFO Creating infrastructure resources...
INFO Waiting up to 20m0s (until 4:06AM) for the Kubernetes API at https://api.jiwei-1013-01.qe.gcp.devcluster.openshift.com:6443...
INFO API v1.24.0+8c7c967 up
INFO Waiting up to 30m0s (until 4:20AM) for bootstrapping to complete...
INFO Destroying the bootstrap resources...
INFO Waiting up to 40m0s (until 4:42AM) for the cluster at https://api.jiwei-1013-01.qe.gcp.devcluster.openshift.com:6443 to initialize...
INFO Checking to see if there is a route at openshift-console/console...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/fedora/test2/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.jiwei-1013-01.qe.gcp.devcluster.openshift.com
INFO Login to the console with user: "kubeadmin", and password: "wWPkc-8G2Lw-xe2Vw-DgWha"
INFO Time elapsed: 39m14s  
$ 
$ openshift-install destroy cluster --dir test2
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json"
INFO Stopped instance jiwei-1013-01-464st-worker-b-pmg5z
INFO Stopped instance jiwei-1013-01-464st-worker-a-csg2j
INFO Stopped instance jiwei-1013-01-464st-master-1
INFO Stopped instance jiwei-1013-01-464st-master-2
INFO Stopped instance jiwei-1013-01-464st-master-0
INFO Deleted 2 recordset(s) in zone qe
INFO Deleted 3 recordset(s) in zone jiwei-1013-01-464st-private-zone
INFO Deleted DNS zone jiwei-1013-01-464st-private-zone
INFO Deleted bucket jiwei-1013-01-464st-image-registry-us-central1-ulgxgjfqxbdnrhd
INFO Deleted instance jiwei-1013-01-464st-master-0
INFO Deleted instance jiwei-1013-01-464st-worker-a-csg2j
INFO Deleted instance jiwei-1013-01-464st-master-1
INFO Deleted instance jiwei-1013-01-464st-worker-b-pmg5z
INFO Deleted instance jiwei-1013-01-464st-master-2
INFO Deleted disk jiwei-1013-01-464st-master-2
INFO Deleted disk jiwei-1013-01-464st-master-1
INFO Deleted disk jiwei-1013-01-464st-worker-b-pmg5z
INFO Deleted disk jiwei-1013-01-464st-master-0
INFO Deleted disk jiwei-1013-01-464st-worker-a-csg2j
INFO Deleted address jiwei-1013-01-464st-cluster-public-ip
INFO Deleted address jiwei-1013-01-464st-cluster-ip
INFO Deleted forwarding rule a516d89f9a4f14bdfb55a525b1a12a91
INFO Deleted forwarding rule jiwei-1013-01-464st-api
INFO Deleted forwarding rule jiwei-1013-01-464st-api-internal
INFO Deleted target pool a516d89f9a4f14bdfb55a525b1a12a91
INFO Deleted target pool jiwei-1013-01-464st-api
INFO Deleted backend service jiwei-1013-01-464st-api-internal
INFO Deleted instance group jiwei-1013-01-464st-master-us-central1-a
INFO Deleted instance group jiwei-1013-01-464st-master-us-central1-c
INFO Deleted instance group jiwei-1013-01-464st-master-us-central1-b
INFO Deleted health check jiwei-1013-01-464st-api-internal
INFO Deleted HTTP health check a516d89f9a4f14bdfb55a525b1a12a91
INFO Deleted HTTP health check jiwei-1013-01-464st-api
INFO Time elapsed: 4m18s   
$ 
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules list --filter='network=installer-shared-vpc'
NAME                                          NETWORK               DIRECTION  PRIORITY  ALLOW                                                                                                                                                     DENY  DISABLED
ci-op-xpn-ingress-common                      installer-shared-vpc  INGRESS    60000     tcp:6443,tcp:22,tcp:80,tcp:443,icmp                                                                                                                             False
ci-op-xpn-ingress-health-checks               installer-shared-vpc  INGRESS    60000     tcp:30000-32767,udp:30000-32767,tcp:6080,tcp:6443,tcp:22624,tcp:32335                                                                                           False
ci-op-xpn-ingress-internal-network            installer-shared-vpc  INGRESS    60000     udp:4789,udp:6081,udp:500,udp:4500,esp,tcp:9000-9999,udp:9000-9999,tcp:10250,tcp:30000-32767,udp:30000-32767,tcp:10257,tcp:10259,tcp:22623,tcp:2379-2380        False
jiwei-1013-01-464st-api                       installer-shared-vpc  INGRESS    1000      tcp:6443                                                                                                                                                        False
jiwei-1013-01-464st-control-plane             installer-shared-vpc  INGRESS    1000      tcp:22623,tcp:10257,tcp:10259                                                                                                                                   False
jiwei-1013-01-464st-etcd                      installer-shared-vpc  INGRESS    1000      tcp:2379-2380                                                                                                                                                   False
jiwei-1013-01-464st-health-checks             installer-shared-vpc  INGRESS    1000      tcp:6080,tcp:6443,tcp:22624                                                                                                                                     False
jiwei-1013-01-464st-internal-cluster          installer-shared-vpc  INGRESS    1000      tcp:30000-32767,udp:9000-9999,udp:30000-32767,udp:4789,udp:6081,tcp:9000-9999,udp:500,udp:4500,esp,tcp:10250                                                    False
jiwei-1013-01-464st-internal-network          installer-shared-vpc  INGRESS    1000      icmp,tcp:22                                                                                                                                                     False
k8s-a516d89f9a4f14bdfb55a525b1a12a91-http-hc  installer-shared-vpc  INGRESS    1000      tcp:30268                                                                                                                                                       False
k8s-fw-a516d89f9a4f14bdfb55a525b1a12a91       installer-shared-vpc  INGRESS    1000      tcp:80,tcp:443                                                                                                                                                  FalseTo show all fields of the firewall, please show in JSON format: --format=json
To show all fields in table format, please see the examples in --help.
$ 

FYI manually deleting those firewall-rules in the shared VPC does work.
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-api
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-api].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-control-plane
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-control-plane].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-etcd
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-etcd].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-health-checks
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-health-checks].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-internal-cluster
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-internal-cluster].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-internal-network
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-internal-network].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q k8s-a516d89f9a4f14bdfb55a525b1a12a91-http-hc
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/k8s-a516d89f9a4f14bdfb55a525b1a12a91-http-hc].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q k8s-fw-a516d89f9a4f14bdfb55a525b1a12a91
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/k8s-fw-a516d89f9a4f14bdfb55a525b1a12a91].
$ 
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules list --filter='network=installer-shared-vpc'
NAME                                NETWORK               DIRECTION  PRIORITY  ALLOW                                                                                                                                                     DENY  DISABLED
ci-op-xpn-ingress-common            installer-shared-vpc  INGRESS    60000     tcp:6443,tcp:22,tcp:80,tcp:443,icmp                                                                                                                             False
ci-op-xpn-ingress-health-checks     installer-shared-vpc  INGRESS    60000     tcp:30000-32767,udp:30000-32767,tcp:6080,tcp:6443,tcp:22624,tcp:32335                                                                                           False
ci-op-xpn-ingress-internal-network  installer-shared-vpc  INGRESS    60000     udp:4789,udp:6081,udp:500,udp:4500,esp,tcp:9000-9999,udp:9000-9999,tcp:10250,tcp:30000-32767,udp:30000-32767,tcp:10257,tcp:10259,tcp:22623,tcp:2379-2380        FalseTo show all fields of the firewall, please show in JSON format: --format=json
To show all fields in table format, please see the examples in --help.
$ 

 

 

 

 

Description of problem:

To address: 'Static Pod is managed but errored" err="managed container xxx does not have Resource.Requests'

Version-Release number of selected component (if applicable):

4.12

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

Already merged in https://github.com/openshift/cluster-kube-controller-manager-operator/pull/660

This is a clone of issue OCPBUGS-4367. The following is the description of the original issue:

Description of problem:

The calls to log.Debugf() from image/baseiso.go and image/oc.go are not being output when the "image create" command is run.

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

Every time

Steps to Reproduce:

1. Run ../bin/openshift-install agent create image --dir ./cluster-manifests/ --log-level debug

Actual results:

No debug log messages from log.Debugf() calls in pkg/asset/agent/image/oc.go

Expected results:

Debug log messages are output

Additional info:

Note from Zane: We should probably also use the real global logger instead of [creating a new one](https://github.com/openshift/installer/blob/2698cbb0ec7e96433a958ab6b864786c0c503c0b/pkg/asset/agent/image/baseiso.go#L109) with the default config that ignores the --log-level flag and prints weird `[0001]` stuff in the output for some reason. (The NMStateConfig manifests logging suffers from the same problem.)

 

 

 

Description of problem:

KafkSink current desctiption in odc is `Kafka Sink is Addressable, it receives events and send them to a Kafka topic.` and this should be `A KafkaSink takes a CloudEvent, and sends it to an Apache Kafka Topic.  Events can be specified in either Structured or Binary mode.` as provided by Serverless team

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Install Serverless operator
2. Create CR for knativeKafka in knative-eventing ns
3. go to dev perspective -> add -> event sink
4. Check the description of kafka sink

Actual results:

 

Expected results:

Update the description to as provided by serverless team

Additional info:

 

Sprig is a dependency of cno which is in turn a dependency of multiple projects while the old sprig has a vulnerability.

This is a clone of issue OCPBUGS-6777. The following is the description of the original issue:

Description of problem:

"create manifests" without an existing "install-config.yaml" missing 4 YAML files in "<install dir>/openshift" which leads to "create cluster" failure

Version-Release number of selected component (if applicable):

$ ./openshift-install version
./openshift-install 4.13.0-0.nightly-2023-01-27-165107
built from commit fca41376abe654a9124f0450727579bb85591438
release image registry.ci.openshift.org/ocp/release@sha256:29b1bc2026e843d7a2d50844f6f31aa0d7eeb0df540c7d9339589ad889eee529
release architecture amd64

How reproducible:

Always

Steps to Reproduce:

1. "create manifests"
2. "create cluster" 

Actual results:

1. After "create manifests", in "<install dir>/openshift", there're 4 YAML files missing, including "99_cloud-creds-secret.yaml", "99_kubeadmin-password-secret.yaml", "99_role-cloud-creds-secret-reader.yaml", and "openshift-install-manifests.yaml", comparing with "create manifests" with an existing "install-config.yaml".
2. The installation failed without any worker nodes due to error getting credentials secret "gcp-cloud-credentials" in namespace "openshift-machine-api".

Expected results:

1. "create manifests" without an existing "install-config.yaml" should generate the same set of YAML files as "create manifests" with an existing "install-config.yaml".
2. Then the subsequent "create cluster" should succeed.

Additional info:

The working scenario: "create manifests" with an existing "install-config.yaml"

$ ./openshift-install version
./openshift-install 4.13.0-0.nightly-2023-01-27-165107
built from commit fca41376abe654a9124f0450727579bb85591438
release image registry.ci.openshift.org/ocp/release@sha256:29b1bc2026e843d7a2d50844f6f31aa0d7eeb0df540c7d9339589ad889eee529
release architecture amd64
$ 
$ mkdir test30
$ cp install-config.yaml test30
$ yq-3.3.0 r test30/install-config.yaml platform
gcp:
  projectID: openshift-qe
  region: us-central1
$ yq-3.3.0 r test30/install-config.yaml metadata
creationTimestamp: null
name: jiwei-0130a
$ ./openshift-install create manifests --dir test30
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json" 
INFO Consuming Install Config from target directory 
WARNING Discarding the Openshift Manifests that was provided in the target directory because its dependencies are dirty and it needs to be regenerated 
INFO Manifests created in: test30/manifests and test30/openshift 
$ 
$ tree test30
test30
├── manifests
│   ├── cloud-controller-uid-config.yml
│   ├── cloud-provider-config.yaml
│   ├── cluster-config.yaml
│   ├── cluster-dns-02-config.yml
│   ├── cluster-infrastructure-02-config.yml
│   ├── cluster-ingress-02-config.yml
│   ├── cluster-network-01-crd.yml
│   ├── cluster-network-02-config.yml
│   ├── cluster-proxy-01-config.yaml
│   ├── cluster-scheduler-02-config.yml
│   ├── cvo-overrides.yaml
│   ├── kube-cloud-config.yaml  
│   ├── kube-system-configmap-root-ca.yaml
│   ├── machine-config-server-tls-secret.yaml
│   └── openshift-config-secret-pull-secret.yaml
└── openshift
    ├── 99_cloud-creds-secret.yaml
    ├── 99_kubeadmin-password-secret.yaml
    ├── 99_openshift-cluster-api_master-machines-0.yaml
    ├── 99_openshift-cluster-api_master-machines-1.yaml
    ├── 99_openshift-cluster-api_master-machines-2.yaml
    ├── 99_openshift-cluster-api_master-user-data-secret.yaml
    ├── 99_openshift-cluster-api_worker-machineset-0.yaml
    ├── 99_openshift-cluster-api_worker-machineset-1.yaml
    ├── 99_openshift-cluster-api_worker-machineset-2.yaml
    ├── 99_openshift-cluster-api_worker-machineset-3.yaml
    ├── 99_openshift-cluster-api_worker-user-data-secret.yaml
    ├── 99_openshift-machine-api_master-control-plane-machine-set.yaml
    ├── 99_openshift-machineconfig_99-master-ssh.yaml
    ├── 99_openshift-machineconfig_99-worker-ssh.yaml
    ├── 99_role-cloud-creds-secret-reader.yaml
    └── openshift-install-manifests.yaml2 directories, 31 files
$ 

The problem scenario: "create manifests" without an existing "install-config.yaml", and then "create cluster"

$ ./openshift-install create manifests --dir test31
? SSH Public Key /home/fedora/.ssh/openshift-qe.pub
? Platform gcp
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json"
? Project ID OpenShift QE (openshift-qe)
? Region us-central1
? Base Domain qe.gcp.devcluster.openshift.com
? Cluster Name jiwei-0130b
? Pull Secret [? for help] *******
INFO Manifests created in: test31/manifests and test31/openshift
$ 
$ tree test31
test31
├── manifests
│   ├── cloud-controller-uid-config.yml
│   ├── cloud-provider-config.yaml
│   ├── cluster-config.yaml
│   ├── cluster-dns-02-config.yml
│   ├── cluster-infrastructure-02-config.yml
│   ├── cluster-ingress-02-config.yml
│   ├── cluster-network-01-crd.yml
│   ├── cluster-network-02-config.yml
│   ├── cluster-proxy-01-config.yaml
│   ├── cluster-scheduler-02-config.yml
│   ├── cvo-overrides.yaml
│   ├── kube-cloud-config.yaml
│   ├── kube-system-configmap-root-ca.yaml
│   ├── machine-config-server-tls-secret.yaml
│   └── openshift-config-secret-pull-secret.yaml
└── openshift
    ├── 99_openshift-cluster-api_master-machines-0.yaml
    ├── 99_openshift-cluster-api_master-machines-1.yaml
    ├── 99_openshift-cluster-api_master-machines-2.yaml
    ├── 99_openshift-cluster-api_master-user-data-secret.yaml
    ├── 99_openshift-cluster-api_worker-machineset-0.yaml
    ├── 99_openshift-cluster-api_worker-machineset-1.yaml
    ├── 99_openshift-cluster-api_worker-machineset-2.yaml
    ├── 99_openshift-cluster-api_worker-machineset-3.yaml
    ├── 99_openshift-cluster-api_worker-user-data-secret.yaml
    ├── 99_openshift-machine-api_master-control-plane-machine-set.yaml
    ├── 99_openshift-machineconfig_99-master-ssh.yaml
    └── 99_openshift-machineconfig_99-worker-ssh.yaml2 directories, 27 files
$ 
$ ./openshift-install create cluster --dir test31
INFO Consuming Common Manifests from target directory
INFO Consuming Openshift Manifests from target directory
INFO Consuming Master Machines from target directory
INFO Consuming Worker Machines from target directory
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json"
INFO Creating infrastructure resources...
INFO Waiting up to 20m0s (until 4:17PM) for the Kubernetes API at https://api.jiwei-0130b.qe.gcp.devcluster.openshift.com:6443...
INFO API v1.25.2+7dab57f up
INFO Waiting up to 30m0s (until 4:28PM) for bootstrapping to complete...
INFO Destroying the bootstrap resources...
INFO Waiting up to 40m0s (until 4:59PM) for the cluster at https://api.jiwei-0130b.qe.gcp.devcluster.openshift.com:6443 to initialize...
ERROR Cluster operator authentication Degraded is True with IngressStateEndpoints_MissingSubsets::OAuthClientsController_SyncError::OAuthServerDeployment_PreconditionNotFulfilled::OAuthServerRouteEndpointAccessibleController_SyncError::OAuthServerServiceEndpointAccessibleController_SyncError::OAuthServerServiceEndpointsEndpointAccessibleController_SyncError::WellKnownReadyController_SyncError: IngressStateEndpointsDegraded: No subsets found for the endpoints of oauth-server
ERROR OAuthClientsControllerDegraded: no ingress for host oauth-openshift.apps.jiwei-0130b.qe.gcp.devcluster.openshift.com in route oauth-openshift in namespace openshift-authentication
ERROR OAuthServerDeploymentDegraded: waiting for the oauth-openshift route to contain an admitted ingress: no admitted ingress for route oauth-openshift in namespace openshift-authentication
ERROR OAuthServerDeploymentDegraded:
ERROR OAuthServerRouteEndpointAccessibleControllerDegraded: route "openshift-authentication/oauth-openshift": status does not have a valid host address
ERROR OAuthServerServiceEndpointAccessibleControllerDegraded: Get "https://172.30.99.43:443/healthz": dial tcp 172.30.99.43:443: connect: connection refused
ERROR OAuthServerServiceEndpointsEndpointAccessibleControllerDegraded: oauth service endpoints are not ready
ERROR WellKnownReadyControllerDegraded: failed to get oauth metadata from openshift-config-managed/oauth-openshift ConfigMap: configmap "oauth-openshift" not found (check authentication operator, it is supposed to create this)
ERROR Cluster operator authentication Available is False with OAuthServerDeployment_PreconditionNotFulfilled::OAuthServerRouteEndpointAccessibleController_ResourceNotFound::OAuthServerServiceEndpointAccessibleController_EndpointUnavailable::OAuthServerServiceEndpointsEndpointAccessibleController_ResourceNotFound::ReadyIngressNodes_NoReadyIngressNodes::WellKnown_NotReady: OAuthServerRouteEndpointAccessibleControllerAvailable: failed to retrieve route from cache: route.route.openshift.io "oauth-openshift" not found
ERROR OAuthServerServiceEndpointAccessibleControllerAvailable: Get "https://172.30.99.43:443/healthz": dial tcp 172.30.99.43:443: connect: connection refused
ERROR OAuthServerServiceEndpointsEndpointAccessibleControllerAvailable: endpoints "oauth-openshift" not found
ERROR ReadyIngressNodesAvailable: Authentication requires functional ingress which requires at least one schedulable and ready node. Got 0 worker nodes, 3 master nodes, 0 custom target nodes (none are schedulable or ready for ingress pods).
ERROR WellKnownAvailable: The well-known endpoint is not yet available: failed to get oauth metadata from openshift-config-managed/oauth-openshift ConfigMap: configmap "oauth-openshift" not found (check authentication operator, it is supposed to create this)
INFO Cluster operator baremetal Disabled is True with UnsupportedPlatform: Nothing to do on this Platform
INFO Cluster operator cloud-controller-manager TrustedCABundleControllerControllerAvailable is True with AsExpected: Trusted CA Bundle Controller works as expected
INFO Cluster operator cloud-controller-manager TrustedCABundleControllerControllerDegraded is False with AsExpected: Trusted CA Bundle Controller works as expected
INFO Cluster operator cloud-controller-manager CloudConfigControllerAvailable is True with AsExpected: Cloud Config Controller works as expected
INFO Cluster operator cloud-controller-manager CloudConfigControllerDegraded is False with AsExpected: Cloud Config Controller works as expected
ERROR Cluster operator cloud-credential Degraded is True with CredentialsFailing: 7 of 7 credentials requests are failing to sync.
INFO Cluster operator cloud-credential Progressing is True with Reconciling: 0 of 7 credentials requests provisioned, 7 reporting errors.
ERROR Cluster operator cluster-autoscaler Degraded is True with MissingDependency: machine-api not ready
ERROR Cluster operator console Degraded is True with DefaultRouteSync_FailedAdmitDefaultRoute::RouteHealth_RouteNotAdmitted::SyncLoopRefresh_FailedIngress: DefaultRouteSyncDegraded: no ingress for host console-openshift-console.apps.jiwei-0130b.qe.gcp.devcluster.openshift.com in route console in namespace openshift-console
ERROR RouteHealthDegraded: console route is not admitted
ERROR SyncLoopRefreshDegraded: no ingress for host console-openshift-console.apps.jiwei-0130b.qe.gcp.devcluster.openshift.com in route console in namespace openshift-console
ERROR Cluster operator console Available is False with RouteHealth_RouteNotAdmitted: RouteHealthAvailable: console route is not admitted 
ERROR Cluster operator control-plane-machine-set Available is False with UnavailableReplicas: Missing 3 available replica(s)
ERROR Cluster operator control-plane-machine-set Degraded is True with NoReadyMachines: No ready control plane machines found
INFO Cluster operator etcd RecentBackup is Unknown with ControllerStarted: The etcd backup controller is starting, and will decide if recent backups are available or if a backup is required
ERROR Cluster operator image-registry Available is False with DeploymentNotFound: Available: The deployment does not exist
ERROR NodeCADaemonAvailable: The daemon set node-ca has available replicas
ERROR ImagePrunerAvailable: Pruner CronJob has been created
INFO Cluster operator image-registry Progressing is True with Error: Progressing: Unable to apply resources: unable to sync storage configuration: unable to get cluster minted credentials "openshift-image-registry/installer-cloud-credentials": secret "installer-cloud-credentials" not found
INFO NodeCADaemonProgressing: The daemon set node-ca is deployed
ERROR Cluster operator image-registry Degraded is True with Unavailable: Degraded: The deployment does not exist
ERROR Cluster operator ingress Available is False with IngressUnavailable: The "default" ingress controller reports Available=False: IngressControllerUnavailable: One or more status conditions indicate unavailable: DeploymentAvailable=False (DeploymentUnavailable: The deployment has Available status condition set to False (reason: MinimumReplicasUnavailable) with message: Deployment does not have minimum availability.), DNSReady=False (NoZones: The record isn't present in any zones.)
INFO Cluster operator ingress Progressing is True with Reconciling: ingresscontroller "default" is progressing: IngressControllerProgressing: One or more status conditions indicate progressing: DeploymentRollingOut=True (DeploymentRollingOut: Waiting for router deployment rollout to finish: 0 of 2 updated replica(s) are available...
INFO ).
INFO Not all ingress controllers are available.
ERROR Cluster operator ingress Degraded is True with IngressDegraded: The "default" ingress controller reports Degraded=True: DegradedConditions: One or more other status conditions indicate a degraded state: DeploymentAvailable=False (DeploymentUnavailable: The deployment has Available status condition set to False (reason: MinimumReplicasUnavailable) with message: Deployment does not have minimum availability.), DeploymentReplicasMinAvailable=False (DeploymentMinimumReplicasNotMet: 0/2 of replicas are available, max unavailable is 1: Some pods are not scheduled: Pod "router-default-c68b5786c-prk7x" cannot be scheduled: 0/3 nodes are available: 3 node(s) didn't match Pod's node affinity/selector, 3 node(s) had untolerated taint {node-role.kubernetes.io/master: }. preemption: 0/3 nodes are available: 3 Preemption is not helpful for scheduling. Pod "router-default-c68b5786c-ssrv7" cannot be scheduled: 0/3 nodes are available: 3 node(s) didn't match Pod's node affinity/selector, 3 node(s) had untolerated taint {node-role.kubernetes.io/master: }. preemption: 0/3 nodes are available: 3 Preemption is not helpful for scheduling. Make sure you have sufficient worker nodes.), DNSReady=False (NoZones: The record isn't present in any zones.), CanaryChecksSucceeding=Unknown (CanaryRouteNotAdmitted: Canary route is not admitted by the default ingress controller)
INFO Cluster operator ingress EvaluationConditionsDetected is False with AsExpected:
INFO Cluster operator insights ClusterTransferAvailable is False with NoClusterTransfer: no available cluster transfer
INFO Cluster operator insights Disabled is False with AsExpected:
INFO Cluster operator insights SCAAvailable is True with Updated: SCA certs successfully updated in the etc-pki-entitlement secret
ERROR Cluster operator kube-controller-manager Degraded is True with GarbageCollector_Error: GarbageCollectorDegraded: error fetching rules: Get "https://thanos-querier.openshift-monitoring.svc:9091/api/v1/rules": dial tcp: lookup thanos-querier.openshift-monitoring.svc on 172.30.0.10:53: no such host  
INFO Cluster operator machine-api Progressing is True with SyncingResources: Progressing towards operator: 4.13.0-0.nightly-2023-01-27-165107
ERROR Cluster operator machine-api Degraded is True with SyncingFailed: Failed when progressing towards operator: 4.13.0-0.nightly-2023-01-27-165107 because minimum worker replica count (2) not yet met: current running replicas 0, waiting for [jiwei-0130b-25fcm-worker-a-j6t42 jiwei-0130b-25fcm-worker-b-dpw9b jiwei-0130b-25fcm-worker-c-9cdms]
ERROR Cluster operator machine-api Available is False with Initializing: Operator is initializing
ERROR Cluster operator monitoring Available is False with UpdatingPrometheusOperatorFailed: reconciling Prometheus Operator Admission Webhook Deployment failed: updating Deployment object failed: waiting for DeploymentRollout of openshift-monitoring/prometheus-operator-admission-webhook: got 2 unavailable replicas
ERROR Cluster operator monitoring Degraded is True with UpdatingPrometheusOperatorFailed: reconciling Prometheus Operator Admission Webhook Deployment failed: updating Deployment object failed: waiting for DeploymentRollout of openshift-monitoring/prometheus-operator-admission-webhook: got 2 unavailable replicas
INFO Cluster operator monitoring Progressing is True with RollOutInProgress: Rolling out the stack.
INFO Cluster operator network ManagementStateDegraded is False with :
INFO Cluster operator network Progressing is True with Deploying: Deployment "/openshift-network-diagnostics/network-check-source" is waiting for other operators to become ready
INFO Deployment "/openshift-cloud-network-config-controller/cloud-network-config-controller" is waiting for other operators to become ready
INFO Cluster operator storage Progressing is True with GCPPDCSIDriverOperatorCR_GCPPDDriverControllerServiceController_Deploying: GCPPDCSIDriverOperatorCRProgressing: GCPPDDriverControllerServiceControllerProgressing: Waiting for Deployment to deploy pods
ERROR Cluster operator storage Available is False with GCPPDCSIDriverOperatorCR_GCPPDDriverControllerServiceController_Deploying: GCPPDCSIDriverOperatorCRAvailable: GCPPDDriverControllerServiceControllerAvailable: Waiting for Deployment
ERROR Cluster initialization failed because one or more operators are not functioning properly.
ERROR The cluster should be accessible for troubleshooting as detailed in the documentation linked below,
ERROR https://docs.openshift.com/container-platform/latest/support/troubleshooting/troubleshooting-installations.html
ERROR The 'wait-for install-complete' subcommand can then be used to continue the installation
ERROR failed to initialize the cluster: Cluster operators authentication, console, control-plane-machine-set, image-registry, ingress, machine-api, monitoring, storage are not available
$ export KUBECONFIG=test31/auth/kubeconfig 
$ ./oc get clusterversion
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version             False       True          74m     Unable to apply 4.13.0-0.nightly-2023-01-27-165107: some cluster operators are not available
$ ./oc get nodes
NAME                                                 STATUS   ROLES                  AGE   VERSION
jiwei-0130b-25fcm-master-0.c.openshift-qe.internal   Ready    control-plane,master   69m   v1.25.2+7dab57f
jiwei-0130b-25fcm-master-1.c.openshift-qe.internal   Ready    control-plane,master   69m   v1.25.2+7dab57f
jiwei-0130b-25fcm-master-2.c.openshift-qe.internal   Ready    control-plane,master   69m   v1.25.2+7dab57f
$ ./oc get machines -n openshift-machine-api
NAME                               PHASE   TYPE   REGION   ZONE   AGE
jiwei-0130b-25fcm-master-0                                        73m
jiwei-0130b-25fcm-master-1                                        73m
jiwei-0130b-25fcm-master-2                                        73m
jiwei-0130b-25fcm-worker-a-j6t42                                  65m
jiwei-0130b-25fcm-worker-b-dpw9b                                  65m
jiwei-0130b-25fcm-worker-c-9cdms                                  65m
$ ./oc get controlplanemachinesets -n openshift-machine-api
NAME      DESIRED   CURRENT   READY   UPDATED   UNAVAILABLE   STATE    AGE
cluster   3         3                           3             Active   74m
$ 

Please see the attached ".openshift_install.log", install-config.yaml snippet, and more "oc" commands outputs.

 

 

 

 

 

Description of problem:
Users on a disconnected cluster with a proxy could not import a Devfile (from GitHub).

The API call /api/devfile/ takes 30 seconds until it fails with 504 Gateway timeout.

Version-Release number of selected component (if applicable):
This might happen since 4.8

Tested this yet only on 4.12.0-0.nightly-2022-09-07-112008

How reproducible:
Always

Steps to Reproduce:

  1. Start a disconnected cluster with a proxy
  2. Open the browser network inspector and filter for /api/devfile
  3. Switch to Developer perspective
  4. Navigate to Add > Developer Catalog (All Services) > Devfiles
  5. Select a Devfile like Basic Go (https://github.com/devfile-samples/devfile-sample-go-basic.git)
  6. Press Create

Actual results:

  • Network call fails after 30 seconds
  • Import doesn't work

Expected results:

  • Import should create a Deployment and switch to topology view

Additional info:
The console Pod log contains this error:

E0909 10:28:18.448680 1 devfile-handler.go:74] Failed to parse devfile: failed to populateAndParseDevfile: Get "https://registry.devfile.io/devfiles/go": context deadline exceeded (Client.Timeout exceeded while awaiting headers)

Description of problem:

Possibly a regression introduced by OCPBUGS-7898, but a 4.12.14 cluster with None infrastructure submitted the following Insights for the cloud-controller-manager ClusterOperator:

2023-05-05T00:08:07Z Upgradeable=False AsExpected:

Version-Release number of selected component (if applicable):

4.12.14

How reproducible:

Unclear.

Steps to Reproduce:

1. Run a 4.12.14 cluster, for some unclear subset of cluster configuration.
2. $ oc get -o json clusteroperator cloud-controller-manager | jq '.status.conditions[] | select(.type == "Upgradeable")'

Actual results:

False with AsExpected and an empty message.

Expected results:

True with AsExpected, or False with a different reason and a message.

This is a clone of issue OCPBUGS-3195. The following is the description of the original issue:

Description of problem:

the service ca controller start func seems to return that error as soon as its context is cancelled (which seems to happen the moment the first signal is received): https://github.com/openshift/service-ca-operator/blob/42088528ef8a6a4b8c99b0f558246b8025584056/pkg/controller/starter.go#L24

that apparently triggers os.Exit(1) immediately https://github.com/openshift/service-ca-operator/blob/42088528ef8a6a4b8c99b0f55824[…]om/openshift/library-go/pkg/controller/controllercmd/builder.go

the lock release doesn't happen until the periodic renew tick breaks out https://github.com/openshift/service-ca-operator/blob/42088528ef8a6a4b8c99b0f55824[…]/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go

seems unlikely that you'd reach the call to le.release() before the call to os.Exit(1) in the other goroutine

Version-Release number of selected component (if applicable):

4.13.0

How reproducible:

~always

Steps to Reproduce:

1. oc delete -n openshift-service-ca pod <service-ca pod>

Actual results:

the old pod logs show:

W1103 09:59:14.370594       1 builder.go:106] graceful termination failed, controllers failed with error: stopped

and when a new pod comes up to replace it, it has to wait for a while before acquiring the leader lock

I1103 16:46:00.166173       1 leaderelection.go:248] attempting to acquire leader lease openshift-service-ca/service-ca-controller-lock...
 .... waiting ....
I1103 16:48:30.004187       1 leaderelection.go:258] successfully acquired lease openshift-service-ca/service-ca-controller-lock

Expected results:

new pod can acquire the leader lease without waiting for the old pod's lease to expire

Additional info:

 

This is a clone of issue OCPBUGS-4874. The following is the description of the original issue:

OCPBUGS-3278 is supposed to fix the issue where the user was required to provide data about the baremetal hosts (including MAC addresses) in the install-config, even though this data is ignored.

However, we determine whether we should disable the validation by checking the second CLI arg to see if it is agent.

This works when the command is:

openshift-install agent create image --dir=whatever

But fails when the argument is e.g., as in dev-scripts:

openshift-install --log-level=debug --dir=whatever agent create image

Customers have introduced Openshift using CloudFormation in "Example 4.55. CloudFormation template for the VPC", referring to the document below.
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/installing/index#installing-restricted-networks-aws
CloudFormation uses python3.7 with Lambda.
Since it will be the EOL of Python 3.7, what kind of effect will it have if it becomes unusable?
Is there any immediate effect? Will there be any impact when adding worker nodes?
OCP Version & Channel: 4.10
Cloud Platform: AWS

 in order to have more info to be able to debug router issue in sno , we want to see if router is healthy from node network point of view and enable router access logs,

Lets revert when https://bugzilla.redhat.com/show_bug.cgi?id=2097041 will be found

Description of problem:

This a bug record to pin down dependencies version in CMO release 4.12 after the release-4.12 branch was detached from master branch.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

N/A

Steps to Reproduce:

N/A

Actual results:

N/A

Expected results:

N/A

Additional info:

None.

Description of problem:

Deploying Openshift 4.12 using IPI is failing to deploy our masters
The issue we encounter when we do a journalctl on the master:
Jan 23 18:21:50 master0-sahara bash[4859]: Copying config sha256:ecc0cdc6ecc65607d63a1847e235f4988c104b07e680c0eed8b2fc0e5c20d934
Jan 23 18:21:50 master0-sahara bash[4859]: Writing manifest to image destination
Jan 23 18:21:50 master0-sahara bash[4859]: Storing signatures
Jan 23 18:21:50 master0-sahara bash[4859]: time="2023-01-23T18:21:50Z" level=warning msg="Found incomplete layer \"e2e51ecd22dcbc318fb317f20dff685c6d54755d60a80b12ed290658864d45fd\", deleting it"
Jan 23 18:21:50 master0-sahara bash[4859]: Error: checking platform of image ecc0cdc6ecc65607d63a1847e235f4988c104b07e680c0eed8b2fc0e5c20d934: inspecting image: layer not known

Everything is working with 4.11

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

Everytime

Steps to Reproduce:

1. Redeploy 4.12 using Openshift IPI

Actual results:

level=error msg=Attempted to gather ClusterOperator status after installation failure: listing ClusterOperator objects: Get \"https://api.orjfdciocp-sahara.otcdcslab.com:6443/apis/config.openshift.io/v1/clusteroperators\": dial tcp 172.16.8.45:6443: connect: no route to host", "level=error msg=Bootstrap failed to complete: timed out waiting for the condition", "level=error msg=Failed to wait for bootstrapping to complete. This error usually happens when there is a problem with control plane hosts that prevents the control plane operators from creating the control plane.", "level=warning msg=The bootstrap machine is unable to resolve API and/or API-Int Server URLs", "level=info msg=Successfully resolved API_INT_URL api-int.orjfdciocp-sahara.otcdcslab.com", "level=info msg=Unable to reach API_INT_URL's https endpoint at https://172.16.8.45:6443/version", "level=info msg=It might be too early for the https://172.16.8.45:6443/version to be available.", "level=info msg=Bootstrap gather logs captured here \"/home/kni/clusterconfigs/log-bundle-20230124124420.tar.gz\""], "stdout": "", "stdout_lines": []}

Expected results:

success 

Additional info:

The workaround is to do a `podman system reset` on the failing master

This is a clone of issue OCPBUGS-12450. The following is the description of the original issue:

Description of problem:

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem: After I run the golang script for OCP-53608, I find the created 

ingress-controller couldn't be deleted

Version-Release number of selected component (if applicable): 

4.12.0-0.nightly-2022-08-15-150248

How reproducible: Run the script and try to delete the custom ingress-controller

Steps to Reproduce:
1.

% oc get clusterversion

NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS

version   4.12.0-0.nightly-2022-08-15-150248   True        False         43m     Cluster version is 4.12.0-0.nightly-2022-08-15-150248

shudi@Shudis-MacBook-Pro openshift-tests-private %

2. Run the script

shudi@Shudis-MacBook-Pro openshift-tests-private % ./bin/extended-platform-tests run all --dry-run | grep 53608 | ./bin/extended-platform-tests run -f -

...

---------------------------------------------------------

Received interrupt.  Running AfterSuite...

^C again to terminate immediately

Aug 18 10:35:51.087: INFO: Running AfterSuite actions on all nodes

Aug 18 10:35:51.088: INFO: Waiting up to 7m0s for all (but 100) nodes to be ready

STEP: Destroying namespace "e2e-test-router-tunning-77627" for this suite.

Aug 18 10:35:54.654: INFO: Running AfterSuite actions on node 1

 

failed: (15m4s) 2022-08-18T02:35:54 "[sig-network-edge] Network_Edge should Author:shudili-Low-53608-Negative Test of Expose a Configurable Reload Interval in HAproxy [Suite:openshift/conformance/parallel]"

 

Failing tests:

 

[sig-network-edge] Network_Edge should Author:shudili-Low-53608-Negative Test of Expose a Configurable Reload Interval in HAproxy [Suite:openshift/conformance/parallel]

 

error: 1 fail, 0 pass, 0 skip (15m4s)

shudi@Shudis-MacBook-Pro openshift-tests-private % 

3.  show the ingress-controllers

shudi@Shudis-MacBook-Pro openshift-tests-private % oc -n openshift-ingress-operator get ingresscontroller

NAME       AGE

default    113m

ocp53608   42m

shudi@Shudis-MacBook-Pro openshift-tests-private %

 

4. Try to delete the ingress-controller ocp53608, when the message "ingresscontroller.operator.openshift.io "ocp53608" deleted" appears, it is hanged for a long time until the error message appears.

shudi@Shudis-MacBook-Pro openshift-tests-private % oc -n openshift-ingress-operator delete ingresscontroller ocp53608

ingresscontroller.operator.openshift.io "ocp53608" deleted

error: An error occurred while waiting for the object to be deleted: an error on the server ("unable to decode an event from the watch stream: http2: client connection lost") has prevented the request from succeedingUnable to connect to the server: dial tcp 35.194.1.60:6443: i/o timeout

shudi@Shudis-MacBook-Pro openshift-tests-private %

 

5. After "ingresscontroller.operator.openshift.io "ocp53608" deleted" message appears, show the ingress-controller, ocp53608 isn't deleted

shudi@Shudis-MacBook-Pro golang % oc -n openshift-ingress-operator get ingresscontroller

NAME       AGE

default    3h

ocp53608   109m

shudi@Shudis-MacBook-Pro golang %

 

6.  After the error message(rror: An error occurred while waiting for the object to be deleted) appears, try to show the ingresscontroller

shudi@Shudis-MacBook-Pro openshift-tests-private % oc -n openshift-ingress-operator get ingresscontroller

E0818 12:21:57.272967    4168 request.go:1085] Unexpected error when reading response body: net/http: request canceled (Client.Timeout or context cancellation while reading body)

E0818 12:21:57.273379    4168 request.go:1085] Unexpected error when reading response body: net/http: request canceled (Client.Timeout or context cancellation while reading body)

E0818 12:21:57.274306    4168 request.go:1085] Unexpected error when reading response body: net/http: request canceled (Client.Timeout or context cancellation while reading body)

Unable to connect to the server: dial tcp 35.194.1.60:6443: i/o timeout

shudi@Shudis-MacBook-Pro openshift-tests-private %

 

Actual results:  ingress-controller ocp53608  is still there after executed the oc delete command

Expected results:

ingress-controller ocp53608  will be deleted soon after executed the oc delete command

Additional info:

Description of problem:
In a complete disconnected cluster, the dev catalog is taking too much time in loading

Version-Release number of selected component (if applicable):

How reproducible:
Always

Steps to Reproduce:
1. A complete disconnected cluster
2. In add page go to the All services page
3.

Actual results:
Taking too much time too load

Expected results:
Time taken should be reduced

Additional info:
Attached a gif for reference

This is a clone of issue OCPBUGS-3287. The following is the description of the original issue:

Description of problem:

Configure both IPv4 and IPv6 addresses in api/ingress in install-config.yaml, install the cluster using agent-based installer. The cluster provisioned has only IPv4 stack for API/Ingress

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. As description
2.
3.

Actual results:

The cluster provisioned has only IPv4 stack for API/Ingress

Expected results:

The cluster provisioned has both IPv4 and IPv6 for API/Ingress

Additional info:

 

This is a clone of issue OCPBUGS-11536. The following is the description of the original issue:

This is a clone of issue OCPBUGS-11434. The following is the description of the original issue:

Description of problem:

node-exporter profiling shows that ~16% of CPU time is spend fetching details about btrfs mounts. RHEL kernel doesn't have btrfs, so its safe to disable this exporter

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-8702. The following is the description of the original issue:

This is a clone of issue OCPBUGS-8523. The following is the description of the original issue:

Description of problem:

Due to rpm-ostree regression (OKD-63) MCO was copying /var/lib/kubelet/config.json into /run/ostree/auth.json on FCOS and SCOS. This breaks Assisted Installer flow, which starts with Live ISO and doesn't have /var/lib/kubelet/config.json

Version-Release number of selected component (if applicable):


How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


Description of problem:
The console crashes when it used with a user settings ConfigMap that is created with a 4.13+ console. This version saves "null" for the key "console.pinnedResources" which doesn't happen before and the old console version could not handle this well.

Version-Release number of selected component (if applicable):
4.8-4.12

How reproducible:
Always, but only in the edge case that someone used a newer console first and then downgraded.

This can happen only by manually applying the user settings ConfigMap or when downgrading a cluster.

Steps to Reproduce:
Open the user-settings ConfigMap and set "console.pinedResources" to "null" (with quotes as all ConfigMap values needs to be strings)

Or run this patch command:

oc patch -n openshift-console-user-settings configmaps user-settings-kubeadmin --type=merge --patch '{"data":{"console.pinnedResources":"null"}}'

Open console...

Actual results:
Console crashes

Expected results:
Console should not crash

Description of problem:

Image registry pods panic while deploying OCP in me-central-1 AWS region

Version-Release number of selected component (if applicable):

4.11.2

How reproducible:

Deploy OCP in AWS me-central-1 region

Steps to Reproduce:

Deploy OCP in AWS me-central-1 region 

Actual results:

panic: Invalid region provided: me-central-1

Expected results:

Image registry pods should come up with no errors

Additional info:

 

Description of problem:

If using ingresscontroller.spec.routeSelector.matchExpressions or ingresscontroller.spec.namespaceSelector.matchExpressions, the route will not count in the new route_metrics_controller_routes_per_shard prometheus metric.

This is due to the logic only using "matchLabels". The logic needs to be updated to also use "matchExpressions".

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1. Create IC with matchExpressions:
oc apply -f - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: sharded
  namespace: openshift-ingress-operator
spec:
  domain: reproducer.$domain
  routeSelector:
    matchExpressions:
    - key: type
      operator: In
      values:
      - shard
  replicas: 1
  nodePlacement:
    nodeSelector:
      matchLabels:
        node-role.kubernetes.io/worker: ""
EOF

2. Create the route:
oc apply -f - <<EOF
apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: route-shard
  labels:
    type: shard
spec:
  to:
    kind: Service
    name: router-shard
EOF

 3. Check route_metrics_controller_routes_per_shard{name="sharded"} in prometheus, it's 0 

Actual results:

route_metrics_controller_routes_per_shard{name="sharded"} has 0 routes

Expected results:

route_metrics_controller_routes_per_shard{name="sharded"} should have 1 route

Additional info:

 

This is a clone of issue OCPBUGS-672. The following is the description of the original issue:

Description of problem:

Redhat-operator part of the marketplace is failing regularly due to startup probe timing out connecting to registry-server container part of the same pod within 1 sec which in turn increases CPU/Mem usage on Master nodes:

62m         Normal    Scheduled                pod/redhat-operators-zb4j7                         Successfully assigned openshift-marketplace/redhat-operators-zb4j7 to ip-10-0-163-212.us-west-2.compute.internal by ip-10-0-149-93
62m         Normal    AddedInterface           pod/redhat-operators-zb4j7                         Add eth0 [10.129.1.112/23] from ovn-kubernetes
62m         Normal    Pulling                  pod/redhat-operators-zb4j7                         Pulling image "registry.redhat.io/redhat/redhat-operator-index:v4.11"
62m         Normal    Pulled                   pod/redhat-operators-zb4j7                         Successfully pulled image "registry.redhat.io/redhat/redhat-operator-index:v4.11" in 498.834447ms
62m         Normal    Created                  pod/redhat-operators-zb4j7                         Created container registry-server
62m         Normal    Started                  pod/redhat-operators-zb4j7                         Started container registry-server
62m         Warning   Unhealthy                pod/redhat-operators-zb4j7                         Startup probe failed: timeout: failed to connect service ":50051" within 1s
62m         Normal    Killing                  pod/redhat-operators-zb4j7                         Stopping container registry-server


Increasing the threshold of the probe might fix the problem:
  livenessProbe:
      exec:
        command:
        - grpc_health_probe
        - -addr=:50051
      failureThreshold: 3
      initialDelaySeconds: 10
      periodSeconds: 10
      successThreshold: 1
      timeoutSeconds: 5
    name: registry-server
    ports:
    - containerPort: 50051
      name: grpc
      protocol: TCP
    readinessProbe:
      exec:
        command:
        - grpc_health_probe
        - -addr=:50051
      failureThreshold: 3
      initialDelaySeconds: 5
      periodSeconds: 10
      successThreshold: 1
      timeoutSeconds: 5 

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Install OSD cluster using 4.11.0-0.nightly-2022-08-26-162248 payload
2. Inspect redhat-operator pod in openshift-marketplace namespace
3. Observe the resource usage ( CPU and Memory ) of the pod 

Actual results:

Redhat-operator failing leading to increase to CPU and Mem usage on master nodes regularly during the startup

Expected results:

Redhat-operator startup probe succeeding and no spikes in resource on master nodes

Additional info:

Attached cpu, memory and event traces.

 

This is a clone of issue OCPBUGS-4684. The following is the description of the original issue:

Description of problem:

In DeploymentConfig both the Form view and Yaml view are not in sync

Version-Release number of selected component (if applicable):

4.11.13

How reproducible:

Always

Steps to Reproduce:

1. Create a DC with selector and labels as given below
spec:
  replicas: 1
  selector:
    app: apigateway
    deploymentconfig: qa-apigateway
    environment: qa
  strategy:
    activeDeadlineSeconds: 21600
    resources: {}
    rollingParams:
      intervalSeconds: 1
      maxSurge: 25%
      maxUnavailable: 25%
      timeoutSeconds: 600
      updatePeriodSeconds: 1
    type: Rolling
  template:
    metadata:
      labels:
        app: apigateway
        deploymentconfig: qa-apigateway
        environment: qa

2. Now go to GUI--> Workloads--> DeploymentConfig --> Actions--> Edit DeploymentConfig, first go to Form view and now switch to Yaml view, the selector and labels shows as app: ubi8 while it should display app: apigateway

  selector:
    app: ubi8
    deploymentconfig: qa-apigateway
    environment: qa
  template:
    metadata:
      creationTimestamp: null
      labels:
        app: ubi8
        deploymentconfig: qa-apigateway
        environment: qa

3. Now in yaml view just click reload and the value is displayed as it is when it was created (app: apigateway).

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

SYN packets for new tcp connections from inside the cluster to an external destination are dropped at random. After few seconds (i.e. few retries), they eventually succeed and no more packet drop happens. Hence, this is perceived as too long TCP connection establishment delay.

Version-Release number of selected component (if applicable):

4.10.0

How reproducible:

Frequently at a concrete cluster. Other clusters with apparently similar configuration don't show the issue.

Steps to Reproduce:

1. Establish TCP connection from pod to external destination.
2.
3.

Actual results:

SYN packets dropped, long TCP establishment time, leading to timeouts.

Expected results:

No drops

Additional info:

This becomes especially harmful because it impacts communication from openshift-apiserver (not to be confused with kube-apiserver) and etcd, because the former is inside the SDN and etcd isn't.

More details will follow in comments.

Description of the problem:

Noticed there were no thread IDs in the assisted-installer logs when debugging 240 node cluster deployment with MCE (slack thread) making it difficult to debug.

How reproducible: 100%

 

Steps to reproduce:

1. Create cluster using assisted service and start the install 

2. Look at the assisted-installer logs 

Actual results:

Logs look like

time="2022-07-14T16:17:31Z" level=info msg="Start complete installation step, with params success: true, error info: " 

Expected results: Thread ID would also print so we can understand which thread it came from


Adding setReportCaller to true will also help

Description of problem:

Have 6 runs of techpreview jobs where the jobs fails due to the MCO:

 

 

{Operator degraded (RequiredPoolsFailed): Unable to apply 4.12.0-0.ci.test-2022-09-21-183414-ci-op-qd6plyhc-latest: error during syncRequiredMachineConfigPools: [timed out waiting for the condition, error pool master is not ready, retrying. Status: (pool degraded: true total: 3, ready 0, updated: 0, unavailable: 3)] Operator degraded (RequiredPoolsFailed): Unable to apply 4.12.0-0.ci.test-2022-09-21-183414-ci-op-qd6plyhc-latest: error during syncRequiredMachineConfigPools: [timed out waiting for the condition, error pool master is not ready, retrying. Status: (pool degraded: true total: 3, ready 0, updated: 0, unavailable: 3)]}
 

 

looking at the MCD logs the master seems to go degraded in bootstrap due to the rendered config not being found?

 
I0921 18:49:47.091804 8171 daemon.go:444] Node ci-op-qd6plyhc-6dd9a-bfmjd-master-1 is part of the control plane I0921 18:49:49.213556 8171 node.go:24] No machineconfiguration.openshift.io/currentConfig annotation on node ci-op-qd6plyhc-6dd9a-bfmjd-master-1: map[csi.volume.kubernetes.io/nodeid:
{"pd.csi.storage.gke.io":"projects/openshift-gce-devel-ci-2/zones/us-central1-b/instances/ci-op-qd6plyhc-6dd9a-bfmjd-master-1"}
volumes.kubernetes.io/controller-managed-attach-detach:true], in cluster bootstrap, loading initial node annotation from /etc/machine-config-daemon/node-annotations.json I0921 18:49:49.215186 8171 node.go:45] Setting initial node config: rendered-master-2dde32327e4e5d15092fccbac1dcec49 I0921 18:49:49.253706 8171 daemon.go:1184] In bootstrap mode E0921 18:49:49.254046 8171 writer.go:200] Marking Degraded due to: machineconfig.machineconfiguration.openshift.io "rendered-master-2dde32327e4e5d15092fccbac1dcec49" not found I0921 18:49:51.232610 8171 daemon.go:499] Transitioned from state: Done -> Degraded I0921 18:49:51.249618 8171 daemon.go:1184] In bootstrap mode E0921 18:49:51.249906 8171 writer.go:200] Marking Degraded due to: machineconfig.machineconfiguration.openshift.io "rendered-master-2dde32327e4e5d15092fccbac1dcec49" not found

However looking at controller a rendered-config was generated correctly but it's not the missing config from above:

I0921 18:54:06.736984 1 render_controller.go:506] Generated machineconfig rendered-master-acc8491aafab8ef511a40b76372325ee from 6 configs: [{MachineConfig 00-master machineconfiguration.openshift.io/v1 } {MachineConfig 01-master-container-runtime machineconfiguration.openshift.io/v1 } {MachineConfig 01-master-kubelet machineconfiguration.openshift.io/v1 } {MachineConfig 98-master-generated-kubelet machineconfiguration.openshift.io/v1 } {MachineConfig 99-master-generated-registries machineconfiguration.openshift.io/v1 } {MachineConfig 99-master-ssh machineconfiguration.openshift.io/v1 }] I0921 18:54:06.737226 1 event.go:285] Event(v1.ObjectReference{Kind:"MachineConfigPool", Namespace:"", Name:"master", UID:"b2084ca6-4b33-46bf-b83b-9e98010ff085", APIVersion:"machineconfiguration.openshift.io/v1", ResourceVersion:"5648", FieldPath:""}): type: 'Normal' reason: 'RenderedConfigGenerated' rendered-master-acc8491aafab8ef511a40b76372325ee successfully generated (release version: 4.12.0-0.ci.test-2022-09-21-183220-ci-op-9ksj7d7g-latest, controller version: a627415c240b4c7dd2f9e90f659690d9c0f623f3) I0921 18:54:06.742053 1 render_controller.go:532] Pool master: now targeting: rendered-master-acc8491aafab8ef511a40b76372325ee

 

So far I see this in the following techpreview jobs:
GCP techpreview
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-gcp-sdn-techpreview/1572638837954318336
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-gcp-sdn-techpreview-serial/1572638838793179136

Vsphere techpreview
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-nightly-4.12-e2e-vsphere-ovn-techpreview/1572638854794448896
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-nightly-4.12-e2e-vsphere-ovn-techpreview-serial/1572638855574589440

AWS Techpreview:
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-aws-sdn-techpreview/1572638828672323584
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-aws-sdn-techpreview-serial/1572638829217583104

 

The above jobs affect the k8s 1.25 bump and are blocking the job.

There are also other occurances not in our PR:
https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/openshift_release/31965/rehearse-31965-pull-ci-openshift-openshift-controller-manager-master-openshift-e2e-aws-builds-techpreview/1572581504297472000

https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/openshift_builder/307/pull-ci-openshift-builder-master-e2e-aws-builds-techpreview/1572599746021822464

 

Also see a quick search:
https://search.ci.openshift.org/?search=timed+out+waiting+for+the+condition%2C+error+pool+master+is+not+ready&maxAge=48h&context=1&type=bug%2Bissue%2Bjunit&name=&excludeName=&maxMatches=5&maxBytes=20971520&groupBy=job

Did something change that would affect tech preview jobs?

Also note, this seems like a new failure. I have some of these jobs passing in the last ~ 8 days.

This is a clone of issue OCPBUGS-1061. The following is the description of the original issue:

Description of problem:

grant monitoring-alertmanager-edit  role to user

# oc adm policy add-cluster-role-to-user cluster-monitoring-view testuser-11

# oc adm policy add-role-to-user monitoring-alertmanager-edit testuser-11 -n openshift-monitoring --role-namespace openshift-monitoring

monitoring-alertmanager-edit user, go to administrator console, "Observe - Alerting - Silences" page is pending to list silences, debug in the console, no findings.

 

create silence with monitoring-alertmanager-edit user for Watchdog alert, silence page is also pending, checked with kubeadmin user, "Observe - Alerting - Silences" page shows the Watchdog alert is silenced, but checked with  monitoring-alertmanager-edit user, Watchdog alert is not silenced.

this should be a regression for https://bugzilla.redhat.com/show_bug.cgi?id=1947005 since 4.9, no such issue then, but there is similiar issue with 4.9.0-0.nightly-2022-09-05-125502 now

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-08-114806

How reproducible:

always

Steps to Reproduce:

1. see the description
2.
3.

Actual results:

administrator console, monitoring-alertmanager-edit user list or create silence, "Observe - Alerting - Silences" page is pending

Expected results:

should not be pending

Additional info:

 

Description of problem:

In looking at jobs on an accepted payload at https://amd64.ocp.releases.ci.openshift.org/releasestream/4.12.0-0.ci/release/4.12.0-0.ci-2022-08-30-122201 , I observed this job https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-serial/1564589538850902016 with "Undiagnosed panic detected in pod" "pods/openshift-controller-manager-operator_openshift-controller-manager-operator-74bf985788-8v9qb_openshift-controller-manager-operator.log.gz:E0830 12:41:48.029165       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)" 

Version-Release number of selected component (if applicable):

4.12

How reproducible:

probably relatively easy to reproduce (but not consistently) given it's happened several times according to this search: https://search.ci.openshift.org/?search=Observed+a+panic%3A+%22invalid+memory+address+or+nil+pointer+dereference%22&maxAge=48h&context=1&type=junit&name=&excludeName=&maxMatches=5&maxBytes=20971520&groupBy=job

Steps to Reproduce:

1. let nightly payloads run or run one of the presubmit jobs mentioned in the search above
2.
3.

Actual results:

Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)}

Expected results:

no panics

Additional info:

 

This is a clone of issue OCPBUGS-11218. The following is the description of the original issue:

This is a clone of issue OCPBUGS-10950. The following is the description of the original issue:

Description of problem: 

"pipelines-as-code-pipelinerun-go" configMap is not been used for the Go repository while creating Pipeline Repository. "pipelines-as-code-pipelinerun-generic" configMap has been used.

Prerequisites (if any, like setup, operators/versions):

Install Red Hat Pipeline operator

Steps to Reproduce

  1. Navigate to Create Repository form 
  2. Enter the Git URL `https://github.com/vikram-raj/hello-func-go`
  3. Click on Add

Actual results:

`pipelines-as-code-pipelinerun-generic` PipelineRun template has been shown on the overview page 

Expected results:

`pipelines-as-code-pipelinerun-go` PipelineRun template should show on the overview page

Reproducibility (Always/Intermittent/Only Once):

Build Details:

4.13

Workaround:

Additional info:

Description of problem:

https://github.com/openshift/api/pull/1186 - https://issues.redhat.com/browse/CONSOLE-3069 promoted ConsolePlugin CRD to v1.

The PR introduces also a conversion webhook from v1alpha1 to v1.

In new CRD version I18n ConsolePluginI18n is marked as optional.
The conversion webhook will not set a default valid ("Lazy"/"Preload") value writing the v1 object and a v1 object completely omitting spec.i18n will be accepted we no valid default value as well.

On the other side, at garbage collection time the object will be stuck forever due to the lack of a valid value for spec.i18n.loadType

Example,
create a v1 ConsolePlugin object:

cat <<EOF | oc apply -f -
apiVersion: console.openshift.io/v1
kind: ConsolePlugin
metadata:
  name: test472
spec:
  backend:
    service:
      basePath: /
      name: test472-service
      namespace: kubevirt-hyperconverged
      port: 9443
    type: Service
  displayName: Test 472 Plugin
EOF

Delete it in foreground mode:
stirabos@t14s:~$ oc delete consoleplugin test472 --timeout=30s --cascade='foreground' -v 7
I1011 18:20: