Back to index

4.12.19

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.59

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

Overview 

HyperShift came to life to serve multiple goals, some are main near-term, some are secondary that serve well long-term. 

Main Goals for hosted control planes (HyperShift)

  • Optimize OpenShift for Cost/footprint/ which improves our competitive stance against the *KSes
  • Establish separation of concerns which makes it more resilient for SRE to manage their workload clusters (be it security, configuration management, etc).
  • Simplify and enhance multi-cluster management experience especially since multi-cluster is becoming an industry need nowadays. 

Secondary Goals

HyperShift opens up doors to penetrate the market. HyperShift enables true hybrid (CP and Workers decoupled, mixed IaaS, mixed Arch,...). An architecture that opens up more options to target new opportunities in the cloud space. For more details on this one check: Hosted Control Planes (aka HyperShift) Strategy [Live Document]

 

Hosted Control Planes (HyperShift) Map 

To bring hosted control planes to our customers, we need the means to ship it. Today MCE is how HyperShift shipped, and installed so that customers can use it. There are two main customers for hosted-control-planes: 

 

  • Self-managed: In that case, Red Hat would provide hosted control planes as a service that is managed and SREed by the customer for their tenants (hence “self”-managed). In this management model, our external customers are the direct consumers of the multi-cluster control plane as a servie. Once MCE is installed, they can start to self-service dedicated control planes. 

 

  • Managed: This is OpenShift as a managed service, today we only “manage” the CP, and share the responsibility for other system components, more info here. To reduce management costs incurred by service delivery organizations which translates to operating profit (by reducing variable costs per control-plane), as well as to improve user experience, lower platform overhead (allow customers to focus mostly on writing applications and not concern themselves with infrastructure artifacts), and improve the cluster provisioning experience. HyperShift is shipped via MCE, and delivered to Red Hat managed SREs (same consumption route). However, for managed services, additional tooling needs to be refactored to support the new provisioning path. Furthermore, unlike self-managed where customers are free to bring their own observability stack, Red Hat managed SREs need to observe the managed fleet to ensure compliance with SLOs/SLIs/…

 

If you have noticed, MCE is the delivery mechanism for both management models. The difference between managed and self-managed is the consumer persona. For self-managed, it's the customer SRE for managed its the RH SRE

High-level Requirements

For us to ship HyperShift in the product (as hosted control planes) in either management model, there is a necessary readiness checklist that we need to satisfy. Below are the high-level requirements needed before GA: 

 

  • Hosted control planes fits well with our multi-cluster story (with MCE)
  • Hosted control planes APIs are stable for consumption  
  • Customers are not paying for control planes/infra components.  
  • Hosted control planes has an HA and a DR story
  • Hosted control planes is in parity with top-level add-on operators 
  • Hosted control planes reports metrics on usage/adoption
  • Hosted control planes is observable  
  • HyperShift as a backend to managed services is fully unblocked.

 

Please also have a look at our What are we missing in Core HyperShift for GA Readiness? doc. 

Hosted control planes fits well with our multi-cluster story

Multi-cluster is becoming an industry need today not because this is where trend is going but because it’s the only viable path today to solve for many of our customer’s use-cases. Below is some reasoning why multi-cluster is a NEED:

 

 

As a result, multi-cluster management is a defining category in the market where Red Hat plays a key role. Today Red Hat solves for multi-cluster via RHACM and MCE. The goal is to simplify fleet management complexity by providing a single pane of glass to observe, secure, police, govern, configure a fleet. I.e., the operand is no longer one cluster but a set, a fleet of clusters. 

HyperShift logically centralized architecture, as well as native separation of concerns and superior cluster lifecyle management experience, makes it a great fit as the foundation of our multi-cluster management story. 

Thus the following stories are important for HyperShift: 

  • When lifecycling OpenShift clusters (for any OpenShift form factor) on any of the supported providers from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to use a consistent UI so I can manage and operate (observe, govern,...) a fleet of clusters.
  • I want to specify HA constraints (e.g., deploy my clusters in different regions) while ensuring acceptable QoS (e.g., latency boundaries) to ensure/reduce any potential downtime for my workloads. 
  • When operating OpenShift clusters (for any OpenShift form factor) on any of the supported provider from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to backup any critical data so I am able to restore them in case of hosting service cluster (management cluster) failure. 

Refs:

Hosted control planes APIs are stable for consumption.

 

HyperShift is the core engine that will be used to provide hosted control-planes for consumption in managed and self-managed. 

 

Main user story:  When life cycling clusters as a cluster service consumer via HyperShift core APIs, I want to use a stable/backward compatible API that is less susceptible to future changes so I can provide availability guarantees. 

 

Ref: What are we missing in Core HyperShift for GA Readiness?

Customers are not paying for control planes/infra components. 

 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumptions

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

HyperShift - proposed cuts from data plane

HyperShift has an HA and a DR story

When operating OpenShift clusters (for any OpenShift form factor) from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin) I want to be able to migrate CPs from one hosting service cluster to another:

  • as means for disaster recovery in the case of total failure
  • so that scaling pressures on a management cluster can be mitigated or a management cluster can be decommissioned.

More information: 

 

Hosted control planes reports metrics on usage/adoption

To understand usage patterns and inform our decision making for the product. We need to be able to measure adoption and assess usage.

See Hosted Control Planes (aka HyperShift) Strategy [Live Document]

Hosted control plane is observable  

Whether it's managed or self-managed, it’s pertinent to report health metrics to be able to create meaningful Service Level Objectives (SLOs), alert of failure to meet our availability guarantees. This is especially important for our managed services path. 

HyperShift is in parity with top-level add-on operators

https://issues.redhat.com/browse/OCPPLAN-8901 

Unblock HyperShift as a backend to managed services

HyperShift for managed services is a strategic company goal as it improves usability, feature, and cost competitiveness against other managed solutions, and because managed services/consumption-based cloud services is where we see the market growing (customers are looking to delegate platform overhead). 

 

We should make sure our SD milestones are unblocked by the core team. 

 

Note 

This feature reflects HyperShift core readiness to be consumed. When all related EPICs and stories in this EPIC are complete HyperShift can be considered ready to be consumed in GA form. This does not describe a date but rather the readiness of core HyperShift to be consumed in GA form NOT the GA itself.

- GA date for self-managed will be factoring in other inputs such as adoption, customer interest/commitment, and other factors. 
- GA dates for ROSA-HyperShift are on track, tracked in milestones M1-7 (have a look at https://issues.redhat.com/browse/OCPPLAN-5771

Epic Goal*

The goal is to split client certificate trust chains from the global Hypershift root CA.

 
Why is this important? (mandatory)

This is important to:

  • assure a workload can be run on any kind of OCP flavor
  • reduce the blast radius in case of a sensitive material leak
  • separate trust to allow more granular control over client certificate authentication

 
Scenarios (mandatory) 

Provide details for user scenarios including actions to be performed, platform specifications, and user personas.  

  1. I would like to be able to run my workloads on any OpenShift-like platform.
    My workloads allow components to authenticate using client certificates based
    on a trust bundle that I am able to retrieve from the cluster.
  1. I don't want my users to have access to any CA bundle that would allow them
    to trust a random certificate from the cluster for client certificate authentication.

 
Dependencies (internal and external) (mandatory)

Hypershift team needs to provide us with code reviews and merge the changes we are to deliver

Contributing Teams(and contacts) (mandatory) 

  • Development - OpenShift Auth, Hypershift
  • Documentation -OpenShift Auth Docs team
  • QE - OpenShift Auth QE
  • PX - I have no idea what PX is
  • Others - others

Acceptance Criteria (optional)

The serviceaccount CA bundle automatically injected to all pods cannot be used to authenticate any client certificate generated by the control-plane.

Drawbacks or Risk (optional)

Risk: there is a throbbing time pressure as this should be delivered before first stable Hypershift release

Done - Checklist (mandatory)

  • CI Testing -  Basic e2e automationTests are merged and completing successfully
  • Documentation - Content development is complete.
  • QE - Test scenarios are written and executed successfully.
  • Technical Enablement - Slides are complete (if requested by PLM)
  • Engineering Stories Merged
  • All associated work items with the Epic are closed
  • Epic status should be “Release Pending” 
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a SRE, I want hypershift operator to expose a metric when hosted control plane is ready. 

This should allow SRE to tune (or silence) alerts occurring while the hosted control plane is spinning up. 

 

 

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The Kube APIServer has a sidecar to output audit logs. We need similar sidecars for other APIServers that run on the control plane side. We also need to pass the same audit log policy that we pass to the KAS to these other API servers.

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Place holder epic to track spontaneous task which does not deserve its own epic.

Once the HostedCluster and NodePool gets stopped using PausedUntil statement, the awsprivatelink controller will continue reconciling.

 

How to test this:

  • Deploy a private cluster
  • Put it in pause once deployed
  • Delete the AWSEndPointService and the Service from the HCP namespace
  • And wait for a reconciliation, the result it's that they should not be recreated
  • Unpause it and wait for recreation.

AC:

We have connectDirectlyToCloudAPIs flag in konnectiviy socks5 proxy to dial directly to cloud providers without going through konnectivity.

This introduce another path for exception https://github.com/openshift/hypershift/pull/1722

We should consolidate both by keep using connectDirectlyToCloudAPIs until there's a reason to not.

 

DoD:

At the moment if the input etcd kms encryption (key and role) is invalid we fail transparently.

We should check that both key and role are compatible/operational for a given cluster and fail in a condition otherwise

AWS has a hard limit of 100 OIDC providers globally. 
Currently each HostedCluster created by e2e creates its own OIDC provider, which results in hitting the quota limit frequently and causing the tests to fail as a result.

 
DOD:
Only a single OIDC provider should be created and shared between all e2e HostedClusters. 

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

This is a clone of issue OCPBUGS-10647. The following is the description of the original issue:

Description of problem:

Cluster Network Operator managed component multus-admission-controller does not conform to Hypershift control plane expectations.

When CNO is managed by Hypershift, multus-admission-controller must run with non-root security context. If Hypershift runs control plane on kubernetes (as opposed to Openshift) management cluster, it adds pod or container security context to most deployments with runAsUser clause inside.

In Hypershift CPO, the security context of deployment containers, including CNO, is set when it detects that SCC's are not available, see https://github.com/openshift/hypershift/blob/9d04882e2e6896d5f9e04551331ecd2129355ecd/support/config/deployment.go#L96-L100. In such a case CNO should do the same, set security context for its managed deployment multus-admission-controller to meet Hypershift standard.

 

How reproducible:

Always

Steps to Reproduce:

1.Create OCP cluster using Hypershift using Kube management cluster
2.Check pod security context of multus-admission-controller

Actual results:

no pod security context is set

Expected results:

pod security context is set with runAsUser: xxxx

Additional info:

This is the highest priority item from https://issues.redhat.com/browse/OCPBUGS-7942 and it needs to be fixed ASAP as it is a security issue preventing IBM from releasing Hypershift-managed Openshift service.

This is a clone of issue OCPBUGS-13598. The following is the description of the original issue:

This is a clone of issue OCPBUGS-6013. The following is the description of the original issue:

Description of problem:

When utilizing the OSD "Edit Cluster Ingress" feature to change the default application router from public to private or vice versa, the external AWS load balancer is removed an replaced by the cloud-ingress-operator.

When this happens, the external load balancer health checks never receive a successful check from the backend nodes, and all nodes are marked out-of-service.

Cluster operators depending on *.apps.CLUSTERNAME.devshift.org begin to fail, initially with DNS errors, which is expected, but then with EOF messages attempting to get the routes associated with their health checks, eg: 

OAuthServerRouteEndpointAccessibleControllerAvailable: Get "https://oauth-openshift.apps.chcollin-mjtj.cvgo.s1.devshift.org/healthz": EOF

This always degrades the authentication, console and ingress (via ingress-canary) operators.

Logs from the `ovnkube-node-*` pods for the instance show VN properly updating the port for the endpoint healthcheck to that of the new port in use by the AWS LB.

The endpointSlices for the endpoint are updated/replaced, but with no change in config as far as I can tell.  They're just recreated.

The service backending the router-default pods has the proper HealthCheckNodePort configuration, matching the new AWS LB.

Curling the service via the CLUSTER_IP:NODE_PORT_HEALTH_CHECK/healthz results in a connection time out.

Curling the local health check for HAPROXY within the router-default pod via `localhost:1936/healthz` results in an OK response as expected.

After rolling the router-default pods manually with `oc rollout restart deployment router-default -n openshift-ingress`, or just deleting the pods, the cluster ends up healing, with the AWS LB seeing the backend infra nodes in service again, and cluster operators depending on the *apps.CLUSTERNAME.devshift.org domain healing on their own as well.

I'm unsure if this should go to network-ovn or network-multis (or some other component), so I'm starting here.  Please redirect me if necessary.

 

Version-Release number of selected component (if applicable):

 

How reproducible:

100%

Steps to Reproduce:

1. Login to the OCM console for the cluster (eg: https://qaprodauth.console.redhat.com/openshift for staging)
2. From the network tab, select "Edit Cluster Ingress"
3. Check or uncheck the "Make Router Private" box for the default application router - it does not matter which way you're swapping.

Actual results:

Ingress to the default router begins to fail for the *.apps routes; never becomes available

Expected results:

Ingress would fail for ~15 minutes as things are reconfigured, and then become available again.

Additional info:

Two must-gathers are available via Google drive https://drive.google.com/drive/u/1/folders/1oIkNOSY0R9Mvo-BZ1Pa3W3iDDfF_726F and shared with Red Hat employees, from a test cluster I created .  The first is from before the change, and the second is from after the change.  This is on a brand new cluster, so logs should be clean-ish.

This is a clone of issue OCPBUGS-8035. The following is the description of the original issue:

Description of problem:

install discnnect private cluster, ssh to master/bootstrap nodes from the bastion on the vpc failed.

Version-Release number of selected component (if applicable):

Pre-merge build https://github.com/openshift/installer/pull/6836
registry.build05.ci.openshift.org/ci-ln-5g4sj02/release:latest
Tag: 4.13.0-0.ci.test-2023-02-27-033047-ci-ln-5g4sj02-latest

How reproducible:

always

Steps to Reproduce:

1.Create bastion instance maxu-ibmj-p1-int-svc 
2.Create vpc on the bastion host 
3.Install private disconnect cluster on the bastion host with mirror registry 
4.ssh to the bastion  
5.ssh to the master/bootstrap nodes from the bastion 

Actual results:

[core@maxu-ibmj-p1-int-svc ~]$ ssh -i ~/openshift-qe.pem core@10.241.0.5 -v
OpenSSH_8.8p1, OpenSSL 3.0.5 5 Jul 2022
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Reading configuration data /etc/ssh/ssh_config.d/50-redhat.conf
debug1: Reading configuration data /etc/crypto-policies/back-ends/openssh.config
debug1: configuration requests final Match pass
debug1: re-parsing configuration
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Reading configuration data /etc/ssh/ssh_config.d/50-redhat.conf
debug1: Reading configuration data /etc/crypto-policies/back-ends/openssh.config
debug1: Connecting to 10.241.0.5 [10.241.0.5] port 22.
debug1: connect to address 10.241.0.5 port 22: Connection timed out
ssh: connect to host 10.241.0.5 port 22: Connection timed out

Expected results:

ssh succeed.

Additional info:

$ibmcloud is sg-rules r014-5a6c16f4-8a4c-4c02-ab2d-626c14f72a77 --vpc maxu-ibmj-p1-vpc
Listing rules of security group r014-5a6c16f4-8a4c-4c02-ab2d-626c14f72a77 under account OpenShift-QE as user ServiceId-dff277a9-b608-410a-ad24-c544e59e3778...
ID                                          Direction   IP version   Protocol                      Remote   
r014-6739d68f-6827-41f4-b51a-5da742c353b2   outbound    ipv4         all                           0.0.0.0/0   
r014-06d44c15-d3fd-4a14-96c4-13e96aa6769c   inbound     ipv4         all                           shakiness-perfectly-rundown-take   r014-25b86956-5370-4925-adaf-89dfca9fb44b   inbound     ipv4         tcp Ports:Min=22,Max=22       0.0.0.0/0   
r014-e18f0f5e-c4e5-44a5-b180-7a84aa59fa97   inbound     ipv4         tcp Ports:Min=3128,Max=3129   0.0.0.0/0   
r014-7e79c4b7-d0bb-4fab-9f5d-d03f6b427d89   inbound     ipv4         icmp Type=8,Code=0            0.0.0.0/0   
r014-03f23b04-c67a-463d-9754-895b8e474e75   inbound     ipv4         tcp Ports:Min=5000,Max=5000   0.0.0.0/0   
r014-8febe8c8-c937-42b6-b352-8ae471749321   inbound     ipv4         tcp Ports:Min=6001,Max=6002   0.0.0.0/0   

Description of problem:

Data race seen in unit tests:
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/pr-logs/pull/openshift_ovn-kubernetes/1448/pull-ci-openshift-ovn-kubernetes-release-4.11-unit/1604898712423763968/artifacts/test/build-log.txt
 

This is a clone of issue OCPBUGS-3476. The following is the description of the original issue:

Description of problem:

When we detect a refs/heads/branchname we should show the label as what we have now:

- Branch: branchname

And when we detect a refs/tags/tagname we should instead show the label as:

- Tag: tagname

I haven't implemented this in cli but there is an old issue for that here openshift-pipelines/pipelines-as-code#181

Version-Release number of selected component (if applicable):

4.11.z

How reproducible:

 

Steps to Reproduce:

1. Create a repository
2. Trigger the pipelineruns by push or pull request event on the github  

Actual results:

We do not show tag name even is tag is present instead of branch

Expected results:

We should show tag if tag is detected and branch if branch is detedcted.

Additional info:

https://github.com/openshift/console/pull/12247#issuecomment-1306879310

Description of problem:

The user mirrored the 4.11.0 release and attempted to use it to generate the the installation ISO in a completely disconnected environment.

When it was the turn for extracting the os image from machine-os-images, the agent based installer ran : oc adm release info --image-for=machine-os-images --insecure=true quay.io/openshift-release-dev/ocp-release@sha256:300bce8246cf880e792e106607925de0a404484637627edf5f517375517d54a4 --registry-config=/tmp/registry-config1141450352

This does not include the --icsp-file, and thus the image reference can be retrieved to perform the extraction.

 

Version-Release number of selected component (if applicable):

https://github.com/openshift/installer/releases/tag/agent-installer-v4.11.0-dev-preview-2

How reproducible:

100%

Steps to Reproduce:

1. Mirroring the images of 4.11.0 using oc adm mirror command to the local registry.
2. Created install-config.yaml with mirror config
3. Created agent-config.yaml 
4. openshift-install-sep1 agent create image --dir kni-22

 

Actual results:

INFO[0001] Start configuring static network for 3 hosts  pkg=manifests
INFO[0002] Adding NMConnection file <bond0.nmconnection>  pkg=manifests
INFO[0002] Adding NMConnection file <eno49.nmconnection>  pkg=manifests
INFO[0002] Adding NMConnection file <eno50.nmconnection>  pkg=manifests
INFO[0003] Adding NMConnection file <bond0.nmconnection>  pkg=manifests
INFO[0003] Adding NMConnection file <eno49.nmconnection>  pkg=manifests
INFO[0003] Adding NMConnection file <eno50.nmconnection>  pkg=manifests
INFO[0004] Adding NMConnection file <bond0.nmconnection>  pkg=manifests
INFO[0004] Adding NMConnection file <eno49.nmconnection>  pkg=manifests
INFO[0004] Adding NMConnection file <eno50.nmconnection>  pkg=manifests
DEBUG   Fetching BaseIso Image...
DEBUG     Fetching Agent Manifests...
DEBUG     Reusing previously-fetched Agent Manifests
DEBUG     Fetching Install Config...
DEBUG     Reusing previously-fetched Install Config
DEBUG     Fetching Mirror Registries Config...
DEBUG     Reusing previously-fetched Mirror Registries Config
DEBUG   Generating BaseIso Image...
INFO[0004] Extracting base ISO from release payload
ERRO[0014] command 'oc adm release info --image-for=machine-os-images --insecure=true quay.io/openshift-release-dev/ocp-release@sha256:300bce8246cf880e792e106607925de0a404484637627edf5f517375517d54a4 --registry-config=/tmp/registry-config1141450352' exited with non-zero exit code 1:
error: unable to read image quay.io/openshift-release-dev/ocp-release@sha256:300bce8246cf880e792e106607925de0a404484637627edf5f517375517d54a4: Get "http://quay.io/v2/": dial tcp: lookup quay.io on 10.92.86.56:53: server misbehaving
WARN[0014] Failed to extract base ISO from release payload - check registry configuration
INFO[0014] Downloading base ISO
DEBUG Obtaining RHCOS image file from 'https://rhcos.mirror.openshift.com/art/storage/releases/rhcos-4.11/411.86.202207150124-0/x86_64/rhcos-411.86.202207150124-0-live.x86_64.iso'
ERROR failed to write asset (Agent Installer ISO) to disk: image reader not available
FATAL failed to fetch Agent Installer ISO: failed to fetch dependency of "Agent Installer ISO": failed to generate asset "BaseIso Image": failed to get base ISO image: command 'oc adm release info --image-for=machine-os-images --insecure=true quay.io/openshift-release-dev/ocp-release@sha256:300bce8246cf880e792e106607925de0a404484637627edf5f517375517d54a4 --registry-config=/tmp/registry-config1141450352' exited with non-zero exit code 1:
FATAL error: unable to read image quay.io/openshift-release-dev/ocp-release@sha256:300bce8246cf880e792e106607925de0a404484637627edf5f517375517d54a4: Get "http://quay.io/v2/": dial tcp: lookup quay.io on 10.92.86.56:53: server misbehaving
FATAL

Expected results:

Image correctly generated

Additional info:

Host OS: RHEL 8.4
NMstate version: nmstate-1.0.2-5.el8.noarch

Description of problem:

There were 4 ingress-controllers and totally 15 routes. On web console, try to query "route_metrics_controller_routes_per_shard" in Observe >> Metrics page. the stats for 3 ingress-controllers are 15, and it is 1 for the last ingress-controller

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-23-154914

How reproducible:

Create pods, services, ingress-controllers, routes, then check  "route_metrics_controller_routes_per_shard" on web console

Steps to Reproduce:

1. get cluster's base domain
% oc get dnses.config/cluster -oyaml | grep -i domain
  baseDomain: shudi-412gcpop36.qe.gcp.devcluster.openshift.com

2. create 3 clusters
% oc -n openshift-ingress-operator get ingresscontroller
NAME         AGE
default      7h5m
extertest3   120m
internal1    120m
internal2    120m
% 

3. check the spec of the 4 ingress-controllres
a, default

b, extertest3
spec:
  domain: extertest3.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: External
    type: LoadBalancerService
c, internal1
spec:
  domain: internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: Internal
    type: LoadBalancerService
d, internal2
spec:
  domain: internal2.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: Internal
    type: LoadBalancerService
  routeSelector:
    matchLabels:
      shard: alpha

4. check the route, there are 15 routes
% oc get route -A | awk '{print $3}'
HOST/PORT
oauth-openshift.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
downloads-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
canary-openshift-ingress-canary.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
alertmanager-main-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-federate-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
thanos-querier-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
edge1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
int1reen2-test.internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
pass1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
reen1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
service-unsecure-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
int1edge2-test.internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
test.shudi.com
%

% oc get route -A | awk '{print $3}' | grep apps.shudi
oauth-openshift.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
downloads-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
canary-openshift-ingress-canary.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
alertmanager-main-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-federate-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
thanos-querier-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
edge1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
pass1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
reen1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
service-unsecure-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
%

% oc get route -A | awk '{print $3}' | grep apps.shudi | wc -l
      12
% oc get route -A | awk '{print $3}' | grep internal1 | wc -l 
       2
% oc get route -A | awk '{print $3}' | grep shudi.com | wc -l
       1
%

5. only route unsvc5 had the shard=alpha label
 % oc get route unsvc5  -oyaml | grep labels: -A2
  labels:
    name: unsvc5
    shard: alpha
 % oc get route unsvc5 -oyaml | grep spec: -A1
  spec:
    host: test.shudi.com

6. login web console(https://https://console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com/monitoring/query-browser), then navigate to Observe >> Metrics 

7. input"route_metrics_controller_routes_per_shard ", then click the "Run queries" button. As the attached picture showed:
​​name                           value
default                        15
extertest3                     15
internal1                      15      
internal2                      1

8. Also there was a minor issue: As the attached picture showed, there were two name in the header line

Name                                           name      value                              
route_metrics_controller_routes_per_shard     default    15
route_metrics_controller_routes_per_shard     extertest3 15
route_metrics_controller_routes_per_shard     internal1  15
route_metrics_controller_routes_per_shard     internal2  1

Actual results:

​​name                         value 
default                      15
extertest3                   15 
internal1                    15
internal2                    1

Expected results:

​​name                         value
default                      12
extertest3                   0
internal1                    2 
internal2                    1

Additional info:

 

Description of problem:

4.12 tech-preview jobs are suffering:

$ w3m -dump -cols 200 'https://search.ci.openshift.org/?search=event+happened.*no+matches+for+kind.*InsightsDataGather&maxAge=48h&type=junit' | grep 'failures match' | sort
periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview-serial (all) - 10 runs, 100% failed, 90% of failures match = 90% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-azure-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-azure-sdn-techpreview-serial (all) - 10 runs, 100% failed, 90% of failures match = 90% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-gcp-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-gcp-sdn-techpreview-serial (all) - 10 runs, 100% failed, 100% of failures match = 100% impact

with runs like this failing:

: [sig-arch] events should not repeat pathologically expand_less	0s
{  1 events happened too frequently

event happened 138 times, something is wrong: ns/default namespace/default - reason/Unable to find REST mapping for %s/%s: %w InsightsDataGather.config.openshift.io%!(EXTRA string=v1, *meta.NoKindMatchError=no matches for kind "InsightsDataGather" in version "config.openshift.io/v1")}

based on events like:

$ curl -s https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview/1597393851226525696/artifacts/e2e-aws-sdn-techpreview/gather-extra/artifacts/events.json | jq -r '.items[] | select(.metadata.namespace == "default" and (.message | contains("InsightsDataGather")))'
{
  "apiVersion": "v1",
  "count": 145,
  "eventTime": null,
  "firstTimestamp": "2022-11-29T01:32:16Z",
  "involvedObject": {
    "apiVersion": "v1",
    "kind": "Namespace",
    "name": "default",
    "namespace": "default"
  },
  "kind": "Event",
  "lastTimestamp": "2022-11-29T02:19:36Z",
  "message": "InsightsDataGather.config.openshift.io%!(EXTRA string=v1, *meta.NoKindMatchError=no matches for kind \"InsightsDataGather\" in version \"config.openshift.io/v1\")",
  "metadata": {
    "creationTimestamp": "2022-11-29T01:32:16Z",
    "name": "default.172bea26177786ae",
    "namespace": "default",
    "resourceVersion": "237357",
    "uid": "187cf3a0-cf4b-4cd1-ae72-51b5d77b7e73"
  },
  "reason": "Unable to find REST mapping for %s/%s: %w",
  "reportingComponent": "",
  "reportingInstance": "",
  "source": {
    "component": "run-resourcewatch-config-observer-controller-configobservercontroller"
  },
  "type": "Warning"
}

Version-Release number of selected component (if applicable):

4.12 tech-preview jobs are impacted.

How reproducible:

100% for some job flavors, per the search CI output above.

Steps to Reproduce:

1. Look at test results for any of the impacted job flavors.

Actual results:

Lots of NoKindMatchError events for v1 InsightsDataGather (it's only v1alpha1).

Expected results:

Passing test-cases.

Additional info:

The problematic REST-mapping client was removed from 4.13/dev as part of origin#27596.

This is a clone of issue OCPBUGS-6799. The following is the description of the original issue:

Description of problem:
The pipelines -> repositories list view in Dev Console does not show the running pipelineline as the last pipelinerun in the table.

Original BugZilla Link: https://bugzilla.redhat.com/show_bug.cgi?id=2016006
OCPBUGSM: https://issues.redhat.com/browse/OCPBUGSM-36408

This is a clone of issue OCPBUGS-2891. The following is the description of the original issue:

Deprovisioning can fail with the error:

level=warning msg=unrecognized elastic load balancing resource type listener arn=arn:aws:elasticloadbalancing:us-west-2:460538899914:listener/net/a9ac9f1b3019c4d1299e7ededc92b42b/a6f0655da877ddd4/45e05ee69d99bab0

 

Further background is available in this write up:

https://docs.google.com/document/d/1TsTqIVwHDmjuDjG7v06w_5AAbXSisaDX-UfUI9-GVJo/edit#

 

Incident channel:

incident-aws-leaking-tags-for-deleted-resources

 

https://github.com/openshift/origin/pull/27444 was intended to move the scaling test out of serial to it's own test suite, but it added it to parallel – meaning it's running in all our normal upgrade jobs, causing them to frequently fail with repeating pathological events as well as greatly increasing their run time.

See https://github.com/openshift/origin/pull/27444#discussion_r991296925 for more info

Console should be using v1 version of the ConsolePlugin model rather then the old v1alpha1.

CONSOLE-3077 was updating this version, but did not made the cut for the 4.12 release. Based on discussion with Samuel Padgett we should be backporting to 4.12.

 

The risk should be minimal since we are only updating the model itself + validation + Readme

Description of problem:


Version-Release number of selected component (if applicable):


How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


This is a clone of issue OCPBUGS-2598. The following is the description of the original issue:

Description of problem:

Liveness probe of ipsec pods fail with large clusters. Currently the command that is executed in the ipsec container is
ovs-appctl -t ovs-monitor-ipsec ipsec/status && ipsec status
The problem is with command "ipsec/status". In clusters with high node count this command will return a list with all the node daemons of the cluster. This means that as the node count raises the completion time of the command raises too. 

This makes the main command 

ovs-appctl -t ovs-monitor-ipsec

To hang until the subcommand is finished.

As the liveness and readiness probe values are hardcoded in the manifest of the ipsec container herehttps//github.com/openshift/cluster-network-operator/blob/9c1181e34316d34db49d573698d2779b008bcc20/bindata/network/ovn-kubernetes/common/ipsec.yaml] the liveness timeout of the container probe of 60 seconds start to be  insufficient as the node count list is growing. This resulted in a cluster with 170 + nodes to have 15+ ipsec pods in a crashloopbackoff state.

Version-Release number of selected component (if applicable):

Openshift Container Platform 4.10 but i think the same will be visible to other versions too.

How reproducible:

I was not able to reproduce due to an extreamely high amount of resources are needed and i think that there is no point as we have spotted the issue.

Steps to Reproduce:

1. Install an Openshift cluster with IPSEC enabled
2. Scale to 170+ nodes or more
3. Notice that the ipsec pods will start getting in a Crashloopbackoff state with failed Liveness/Readiness probes.

Actual results:

Ip Sec pods are stuck in a Crashloopbackoff state

Expected results:

Ip Sec pods to work normally

Additional info:

We have provided a workaround where CVO and CNO operators are scaled to 0 replicas in order for us to be able to increase the liveness probe limit to a value of 600 that recovered the cluster. 
As a next step the customer will try to reduce the node count and restore the default liveness timeout value along with bringing the operators back to see if the cluster will stabilize.

 

This is a clone of issue OCPBUGS-5164. The following is the description of the original issue:

Description of problem:

It looks like the ODC doesn't register KNATIVE_SERVING and KNATIVE_EVENTING flags. Those are based on KnativeServing and KnativeEventing CRs, but they are looking for v1alpha1 version of those: https://github.com/openshift/console/blob/f72519fdf2267ad91cc0aa51467113cc36423a49/frontend/packages/knative-plugin/console-extensions.json#L6-L8
This PR https://github.com/openshift-knative/serverless-operator/pull/1695 moved the CRs to v1beta1, and that breaks that ODC discovery.

Version-Release number of selected component (if applicable):

Openshift 4.8, Serverless Operator 1.27

Additional info:

https://coreos.slack.com/archives/CHGU4P8UU/p1671634903447019

 

Description of problem:

i18n translation missing in "Remove component node from application" modal

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Navigate to dev console and create a workload under an Application group
2. On the Toplogy remove the workload from the Application group
3. See the i18n error in the console

Actual results:

Missing i18n key "Remove component node from application" in namespace "topology" and language "en." in console

Expected results:

No i18n error should be shown in the console.

Additional info:

 

Description of problem:

scale up more worker nodes but they are not added to the Load Balancer instances (backend pool), if moving the router pod to the new worker nodes then co/ingress becomes degraded

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-23-204408

How reproducible:

100%

Steps to Reproduce:

1. ensure the fresh install cluster works well.
2. scale up worker nodes.
$ oc -n openshift-machine-api get machineset
NAME                                  DESIRED   CURRENT   READY   AVAILABLE   AGE
hongli-1024-hnkrm-worker-us-east-2a   1         1         1       1           5h21m
hongli-1024-hnkrm-worker-us-east-2b   1         1         1       1           5h21m
hongli-1024-hnkrm-worker-us-east-2c   1         1         1       1           5h21m

$ oc -n openshift-machine-api scale machineset hongli-1024-hnkrm-worker-us-east-2a --replicas=2
machineset.machine.openshift.io/hongli-1024-hnkrm-worker-us-east-2a scaled

$ oc -n openshift-machine-api scale machineset hongli-1024-hnkrm-worker-us-east-2b --replicas=2
machineset.machine.openshift.io/hongli-1024-hnkrm-worker-us-east-2b scaled

(about 5 minutes later)
$ oc -n openshift-machine-api get machineset
NAME                                  DESIRED   CURRENT   READY   AVAILABLE   AGE
hongli-1024-hnkrm-worker-us-east-2a   2         2         2       2           5h29m
hongli-1024-hnkrm-worker-us-east-2b   2         2         2       2           5h29m
hongli-1024-hnkrm-worker-us-east-2c   1         1         1       1           5h29m


3. delete router pods and to make new ones running on new workers

$ oc get node
NAME                                         STATUS   ROLES                  AGE     VERSION
ip-10-0-128-45.us-east-2.compute.internal    Ready    worker                 71m     v1.25.2+4bd0702
ip-10-0-131-192.us-east-2.compute.internal   Ready    control-plane,master   6h35m   v1.25.2+4bd0702
ip-10-0-139-51.us-east-2.compute.internal    Ready    worker                 6h29m   v1.25.2+4bd0702
ip-10-0-162-228.us-east-2.compute.internal   Ready    worker                 71m     v1.25.2+4bd0702
ip-10-0-172-216.us-east-2.compute.internal   Ready    control-plane,master   6h35m   v1.25.2+4bd0702
ip-10-0-190-82.us-east-2.compute.internal    Ready    worker                 6h25m   v1.25.2+4bd0702
ip-10-0-196-26.us-east-2.compute.internal    Ready    control-plane,master   6h35m   v1.25.2+4bd0702
ip-10-0-199-158.us-east-2.compute.internal   Ready    worker                 6h28m   v1.25.2+4bd0702

$ oc -n openshift-ingress get pod -owide
NAME                              READY   STATUS    RESTARTS   AGE   IP           NODE                                         NOMINATED NODE   READINESS GATES
router-default-86444dcd84-cm96l   1/1     Running   0          65m   10.130.2.7   ip-10-0-128-45.us-east-2.compute.internal    <none>           <none>
router-default-86444dcd84-vpnjz   1/1     Running   0          65m   10.131.2.7   ip-10-0-162-228.us-east-2.compute.internal   <none>           <none>


Actual results:

$ oc get co ingress console authentication
NAME             VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
ingress          4.12.0-0.nightly-2022-10-23-204408   True        False         True       66m     The "default" ingress controller reports Degraded=True: DegradedConditions: One or more other status conditions indicate a degraded state: CanaryChecksSucceeding=False (CanaryChecksRepetitiveFailures: Canary route checks for the default ingress controller are failing)
console          4.12.0-0.nightly-2022-10-23-204408   False       False         False      66m     RouteHealthAvailable: failed to GET route (https://console-openshift-console.apps.hongli-1024.qe.devcluster.openshift.com): Get "https://console-openshift-console.apps.hongli-1024.qe.devcluster.openshift.com": EOF
authentication   4.12.0-0.nightly-2022-10-23-204408   False       False         True       66m     OAuthServerRouteEndpointAccessibleControllerAvailable: Get "https://oauth-openshift.apps.hongli-1024.qe.devcluster.openshift.com/healthz": EOF


checked the Load Balancer on AWS console and found that new created nodes are not added to load balancer. see the snapshot attached.

Expected results:

the LB should added new created instances automatically and ingress should work with new workers.

Additional info:

1. this is also reproducible with common user created LoadBalancer service.
2. if the LB service is created after adding the new nodes then it works well, we can see that all nodes are added to LB on AWS console.  

 

This is a clone of issue OCPBUGS-12854. The following is the description of the original issue:

This is a clone of issue OCPBUGS-11550. The following is the description of the original issue:

Description of problem:

`cluster-reader` ClusterRole should have ["get", "list", "watch"] permissions for a number of privileged CRs, but lacks them for the API Group "k8s.ovn.org", which includes CRs such as EgressFirewalls, EgressIPs, etc.

Version-Release number of selected component (if applicable):

OCP 4.10 - 4.12 OVN

How reproducible:

Always

Steps to Reproduce:

1. Create a cluster with OVN components, e.g. EgressFirewall
2. Check permissions of ClusterRole `cluster-reader`

Actual results:

No permissions for OVN resources 

Expected results:

Get, list, and watch verb permissions for OVN resources

Additional info:

Looks like a similar bug was opened for "network-attachment-definitions" in OCPBUGS-6959 (whose closure is being contested).

This is a clone of issue OCPBUGS-3084. The following is the description of the original issue:

Upstream Issue: https://github.com/kubernetes/kubernetes/issues/77603

Long log lines get corrupted when using '--timestamps' by the Kubelet.

The root cause is that the buffer reads up to a new line. If the line is greater than 4096 bytes and '--timestamps' is turrned on the kubelet will write the timestamp and the partial log line. We will need to refactor the ReadLogs function to allow for a partial line read.

https://github.com/kubernetes/kubernetes/blob/f892ab1bd7fd97f1fcc2e296e85fdb8e3e8fb82d/pkg/kubelet/kuberuntime/logs/logs.go#L325

apiVersion: v1
kind: Pod
metadata:
  name: logs
spec:
  restartPolicy: Never
  containers:
  - name: logs
    image: fedora
    args:
    - bash
    - -c
    - 'for i in `seq 1 10000000`; do echo -n $i; done'
kubectl logs logs --timestamps

In 4.12.0-rc.0 some API-server components declare flowcontrol/v1beta1 release manifests:

$ oc adm release extract --to manifests quay.io/openshift-release-dev/ocp-release:4.12.0-rc.0-x86_64
$ grep -r flowcontrol.apiserver.k8s.io manifests
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_etcd-operator_10_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_kube-apiserver-operator_08_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_kube-apiserver-operator_08_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_kube-apiserver-operator_08_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-apiserver-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-apiserver-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-apiserver-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-controller-manager-operator_10_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1

The APIs are scheduled for removal in Kube 1.26, which will ship with OpenShift 4.13. We want the 4.12 CVO to move to modern APIs in 4.12, so the APIRemovedInNext.*ReleaseInUse alerts are not firing on 4.12. This ticket tracks removing those manifests, or replacing them with a more modern resource type, or some such. Definition of done is that new 4.13 (and with backports, 4.12) nightlies no longer include flowcontrol.apiserver.k8s.io/v1beta1 manifests.

This can be noticed in https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/pr-logs/pull/27560/pull-ci-openshift-origin-master-e2e-gcp-ovn/1593697975584952320/artifacts/e2e-gcp-ovn/openshift-e2e-test/build-log.txt:

[It] clients should not use APIs that are removed in upcoming releases [apigroup:config.openshift.io] [Suite:openshift/conformance/parallel]
  github.com/openshift/origin/test/extended/apiserver/api_requests.go:27
Nov 18 21:59:06.261: INFO: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
Nov 18 21:59:06.261: INFO: api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
Nov 18 21:59:06.261: INFO: api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
Nov 18 21:59:06.261: INFO: user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
Nov 18 21:59:06.261: INFO: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
Nov 18 21:59:06.261: INFO: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
[AfterEach] [sig-arch][Late]
  github.com/openshift/origin/test/extended/util/client.go:158
[AfterEach] [sig-arch][Late]
  github.com/openshift/origin/test/extended/util/client.go:159
flake: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
Ginkgo exit error 4: exit with code 4

This is required to unblock https://github.com/openshift/origin/pull/27561

This is a clone of issue OCPBUGS-1627. The following is the description of the original issue:

Description of problem:
Two issues when setting user-defined folder in failureDomain.
1. installer get error when setting folder as a path of user-defined folder in failureDomain.

failureDomains setting in install-config.yaml:

    failureDomains:
    - name: us-east-1
      region: us-east
      zone: us-east-1a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-1
        networks:
        - multi-zone-qe-dev-1
        datastore: multi-zone-ds-1
        folder: /IBMCloud/vm/qe-jima
    - name: us-east-2
      region: us-east
      zone: us-east-2a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-2
        networks:
        - multi-zone-qe-dev-1
        datastore: multi-zone-ds-2
        folder: /IBMCloud/vm/qe-jima
    - name: us-east-3
      region: us-east
      zone: us-east-3a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-3
        networks:
        - multi-zone-qe-dev-1
        datastore: workload_share_vcsmdcncworkload3_joYiR
        folder: /IBMCloud/vm/qe-jima
    - name: us-west-1
      region: us-west
      zone: us-west-1a
      server: ibmvcenter.vmc-ci.devcluster.openshift.com
      topology:
        datacenter: datacenter-2
        computeCluster: /datacenter-2/host/vcs-mdcnc-workload-4
        networks:
        - multi-zone-qe-dev-1
        datastore: workload_share_vcsmdcncworkload3_joYiR

Error message in terraform after completing ova image import:

DEBUG vsphereprivate_import_ova.import[0]: Still creating... [1m40s elapsed] 
DEBUG vsphereprivate_import_ova.import[3]: Creation complete after 1m40s [id=vm-367860] 
DEBUG vsphereprivate_import_ova.import[1]: Creation complete after 1m49s [id=vm-367863] 
DEBUG vsphereprivate_import_ova.import[0]: Still creating... [1m50s elapsed] 
DEBUG vsphereprivate_import_ova.import[2]: Still creating... [1m50s elapsed] 
DEBUG vsphereprivate_import_ova.import[2]: Still creating... [2m0s elapsed] 
DEBUG vsphereprivate_import_ova.import[0]: Still creating... [2m0s elapsed] 
DEBUG vsphereprivate_import_ova.import[2]: Creation complete after 2m2s [id=vm-367862] 
DEBUG vsphereprivate_import_ova.import[0]: Still creating... [2m10s elapsed] 
DEBUG vsphereprivate_import_ova.import[0]: Creation complete after 2m20s [id=vm-367861] 
DEBUG data.vsphere_virtual_machine.template[0]: Reading... 
DEBUG data.vsphere_virtual_machine.template[3]: Reading... 
DEBUG data.vsphere_virtual_machine.template[1]: Reading... 
DEBUG data.vsphere_virtual_machine.template[2]: Reading... 
DEBUG data.vsphere_virtual_machine.template[3]: Read complete after 1s [id=42054e33-85d6-e310-7f4f-4c52a73f8338] 
DEBUG data.vsphere_virtual_machine.template[1]: Read complete after 2s [id=42053e17-cc74-7c89-f5d1-059c9030ecc7] 
DEBUG data.vsphere_virtual_machine.template[2]: Read complete after 2s [id=4205019f-26d8-f9b4-ac0c-2c073fd70b35] 
DEBUG data.vsphere_virtual_machine.template[0]: Read complete after 2s [id=4205eaf2-c727-c647-ad44-bd9ad7023c56] 
ERROR                                              
ERROR Error: error trying to determine parent targetFolder: folder '/IBMCloud/vm//IBMCloud/vm' not found 
ERROR                                              
ERROR   with vsphere_folder.folder["IBMCloud-/IBMCloud/vm/qe-jima"], 
ERROR   on main.tf line 61, in resource "vsphere_folder" "folder": 
ERROR   61: resource "vsphere_folder" "folder" {   
ERROR                                              
ERROR failed to fetch Cluster: failed to generate asset "Cluster": failure applying terraform for "pre-bootstrap" stage: failed to create cluster: failed to apply Terraform: exit status 1 
ERROR                                              
ERROR Error: error trying to determine parent targetFolder: folder '/IBMCloud/vm//IBMCloud/vm' not found 
ERROR                                              
ERROR   with vsphere_folder.folder["IBMCloud-/IBMCloud/vm/qe-jima"], 
ERROR   on main.tf line 61, in resource "vsphere_folder" "folder": 
ERROR   61: resource "vsphere_folder" "folder" {   
ERROR                                              
ERROR   

2.  installer get panic error when setting folder as user-defined folder name in failure domains.

failure domain in install-config.yaml

    failureDomains:
    - name: us-east-1
      region: us-east
      zone: us-east-1a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-1
        networks:
        - multi-zone-qe-dev-1
        datastore: multi-zone-ds-1
        folder: qe-jima
    - name: us-east-2
      region: us-east
      zone: us-east-2a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-2
        networks:
        - multi-zone-qe-dev-1
        datastore: multi-zone-ds-2
        folder: qe-jima
    - name: us-east-3
      region: us-east
      zone: us-east-3a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-3
        networks:
        - multi-zone-qe-dev-1
        datastore: workload_share_vcsmdcncworkload3_joYiR
        folder: qe-jima
    - name: us-west-1
      region: us-west
      zone: us-west-1a
      server: xxx
      topology:
        datacenter: datacenter-2
        computeCluster: /datacenter-2/host/vcs-mdcnc-workload-4
        networks:
        - multi-zone-qe-dev-1
        datastore: workload_share_vcsmdcncworkload3_joYiR                                  

panic error message in installer:

INFO Obtaining RHCOS image file from 'https://rhcos.mirror.openshift.com/art/storage/releases/rhcos-4.12/412.86.202208101039-0/x86_64/rhcos-412.86.202208101039-0-vmware.x86_64.ova?sha256=' 
INFO The file was found in cache: /home/user/.cache/openshift-installer/image_cache/rhcos-412.86.202208101039-0-vmware.x86_64.ova. Reusing... 
panic: runtime error: index out of range [1] with length 1goroutine 1 [running]:
github.com/openshift/installer/pkg/tfvars/vsphere.TFVars({{0xc0013bd068, 0x3, 0x3}, {0xc000b11dd0, 0x12}, {0xc000b11db8, 0x14}, {0xc000b11d28, 0x14}, {0xc000fe8fc0, ...}, ...})
    /go/src/github.com/openshift/installer/pkg/tfvars/vsphere/vsphere.go:79 +0x61b
github.com/openshift/installer/pkg/asset/cluster.(*TerraformVariables).Generate(0x1d1ed360, 0x5?)
    /go/src/github.com/openshift/installer/pkg/asset/cluster/tfvars.go:847 +0x4798
 

Based on explanation of field folder, looks like folder name should be ok. If it is not allowed to use folder name, need to validate the folder and update explain.

 

sh-4.4$ ./openshift-install explain installconfig.platform.vsphere.failureDomains.topology.folder
KIND:     InstallConfig
VERSION:  v1RESOURCE: <string>
  folder is the name or inventory path of the folder in which the virtual machine is created/located.
 

 

 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-20-095559

How reproducible:

always

Steps to Reproduce:

see description

Actual results:

installation has errors when set user-defined folder

Expected results:

installation is successful when set user-defined folder

Additional info:

 

Description of problem:

Create Loadbalancer type service within the OCP 4.11.x OVNKubernetes cluster to expose the api server endpoint, the service does not response for normal oc request. 
But some of them are working, like "oc whoami", "oc get --raw /api"

Version-Release number of selected component (if applicable):

4.11.8 with OVNKubernetes

How reproducible:

always

Steps to Reproduce:

1. Setup openshift cluster 4.11 on AWS with OVNKubernetes as the default network
2. Create the following service under openshift-kube-apiserver namespace to expose the api
----
apiVersion: v1
kind: Service
metadata:
  annotations:
    service.beta.kubernetes.io/aws-load-balancer-connection-idle-timeout: "1800"
  finalizers:
  - service.kubernetes.io/load-balancer-cleanup
  name: test-api
  namespace: openshift-kube-apiserver
spec:
  allocateLoadBalancerNodePorts: true
  externalTrafficPolicy: Cluster
  internalTrafficPolicy: Cluster
  ipFamilies:
  - IPv4
  ipFamilyPolicy: SingleStack
  loadBalancerSourceRanges:
  - <my_ip>/32
  ports:
  - nodePort: 31248
    port: 6443
    protocol: TCP
    targetPort: 6443
  selector:
    apiserver: "true"
    app: openshift-kube-apiserver
  sessionAffinity: None
  type: LoadBalancer

3. Setup the DNS resolution for the access
xxx.mydomain.com ---> <elb-auto-generated-dns>

4. Try to access the cluster api via the service above by updating the kubeconfig to use the custom dns name

Actual results:

No response from the server side.

$ time oc get node -v8
I1025 08:29:10.284069  103974 loader.go:375] Config loaded from file:  bmeng.kubeconfig
I1025 08:29:10.294017  103974 round_trippers.go:420] GET https://rh-api.bmeng-ccs-ovn.3o13.s1.devshift.org:6443/api/v1/nodes?limit=500
I1025 08:29:10.294035  103974 round_trippers.go:427] Request Headers:
I1025 08:29:10.294043  103974 round_trippers.go:431]     Accept: application/json;as=Table;v=v1;g=meta.k8s.io,application/json;as=Table;v=v1beta1;g=meta.k8s.io,application/json
I1025 08:29:10.294052  103974 round_trippers.go:431]     User-Agent: oc/openshift (linux/amd64) kubernetes/e40bd2d
I1025 08:29:10.365119  103974 round_trippers.go:446] Response Status: 200 OK in 71 milliseconds
I1025 08:29:10.365142  103974 round_trippers.go:449] Response Headers:
I1025 08:29:10.365148  103974 round_trippers.go:452]     Audit-Id: 83b9d8ae-05a4-4036-bff6-de371d5bec12
I1025 08:29:10.365155  103974 round_trippers.go:452]     Cache-Control: no-cache, private
I1025 08:29:10.365161  103974 round_trippers.go:452]     Content-Type: application/json
I1025 08:29:10.365167  103974 round_trippers.go:452]     X-Kubernetes-Pf-Flowschema-Uid: 2abc2e2d-ada3-4cb8-a86f-235df3a4e214
I1025 08:29:10.365173  103974 round_trippers.go:452]     X-Kubernetes-Pf-Prioritylevel-Uid: 02f7a188-43c7-4827-af58-5ebe861a1891
I1025 08:29:10.365179  103974 round_trippers.go:452]     Date: Tue, 25 Oct 2022 08:29:10 GMT
^C
real    17m4.840s
user    0m0.567s
sys    0m0.163s


However, it has the correct response if using --raw to request, eg:
$ oc get --raw /api/v1  --kubeconfig bmeng.kubeconfig 
{"kind":"APIResourceList","groupVersion":"v1","resources":[{"name":"bindings","singularName":"","namespaced":true,"kind":"Binding","verbs":["create"]},{"name":"componentstatuses","singularName":"","namespaced":false,"kind":"ComponentStatus","verbs":["get","list"],"shortNames":["cs"]},{"name":"configmaps","singularName":"","namespaced":true,"kind":"ConfigMap","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["cm"],"storageVersionHash":"qFsyl6wFWjQ="},{"name":"endpoints","singularName":"","namespaced":true,"kind":"Endpoints","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["ep"],"storageVersionHash":"fWeeMqaN/OA="},{"name":"events","singularName":"","namespaced":true,"kind":"Event","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["ev"],"storageVersionHash":"r2yiGXH7wu8="},{"name":"limitranges","singularName":"","namespaced":true,"kind":"LimitRange","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["limits"],"storageVersionHash":"EBKMFVe6cwo="},{"name":"namespaces","singularName":"","namespaced":false,"kind":"Namespace","verbs":["create","delete","get","list","patch","update","watch"],"shortNames":["ns"],"storageVersionHash":"Q3oi5N2YM8M="},{"name":"namespaces/finalize","singularName":"","namespaced":false,"kind":"Namespace","verbs":["update"]},{"name":"namespaces/status","singularName":"","namespaced":false,"kind":"Namespace","verbs":["get","patch","update"]},{"name":"nodes","singularName":"","namespaced":false,"kind":"Node","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["no"],"storageVersionHash":"XwShjMxG9Fs="},{"name":"nodes/proxy","singularName":"","namespaced":false,"kind":"NodeProxyOptions","verbs":["create","delete","get","patch","update"]},{"name":"nodes/status","singularName":"","namespaced":false,"kind":"Node","verbs":["get","patch","update"]},{"name":"persistentvolumeclaims","singularName":"","namespaced":true,"kind":"PersistentVolumeClaim","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["pvc"],"storageVersionHash":"QWTyNDq0dC4="},{"name":"persistentvolumeclaims/status","singularName":"","namespaced":true,"kind":"PersistentVolumeClaim","verbs":["get","patch","update"]},{"name":"persistentvolumes","singularName":"","namespaced":false,"kind":"PersistentVolume","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["pv"],"storageVersionHash":"HN/zwEC+JgM="},{"name":"persistentvolumes/status","singularName":"","namespaced":false,"kind":"PersistentVolume","verbs":["get","patch","update"]},{"name":"pods","singularName":"","namespaced":true,"kind":"Pod","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["po"],"categories":["all"],"storageVersionHash":"xPOwRZ+Yhw8="},{"name":"pods/attach","singularName":"","namespaced":true,"kind":"PodAttachOptions","verbs":["create","get"]},{"name":"pods/binding","singularName":"","namespaced":true,"kind":"Binding","verbs":["create"]},{"name":"pods/ephemeralcontainers","singularName":"","namespaced":true,"kind":"Pod","verbs":["get","patch","update"]},{"name":"pods/eviction","singularName":"","namespaced":true,"group":"policy","version":"v1","kind":"Eviction","verbs":["create"]},{"name":"pods/exec","singularName":"","namespaced":true,"kind":"PodExecOptions","verbs":["create","get"]},{"name":"pods/log","singularName":"","namespaced":true,"kind":"Pod","verbs":["get"]},{"name":"pods/portforward","singularName":"","namespaced":true,"kind":"PodPortForwardOptions","verbs":["create","get"]},{"name":"pods/proxy","singularName":"","namespaced":true,"kind":"PodProxyOptions","verbs":["create","delete","get","patch","update"]},{"name":"pods/status","singularName":"","namespaced":true,"kind":"Pod","verbs":["get","patch","update"]},{"name":"podtemplates","singularName":"","namespaced":true,"kind":"PodTemplate","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"storageVersionHash":"LIXB2x4IFpk="},{"name":"replicationcontrollers","singularName":"","namespaced":true,"kind":"ReplicationController","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["rc"],"categories":["all"],"storageVersionHash":"Jond2If31h0="},{"name":"replicationcontrollers/scale","singularName":"","namespaced":true,"group":"autoscaling","version":"v1","kind":"Scale","verbs":["get","patch","update"]},{"name":"replicationcontrollers/status","singularName":"","namespaced":true,"kind":"ReplicationController","verbs":["get","patch","update"]},{"name":"resourcequotas","singularName":"","namespaced":true,"kind":"ResourceQuota","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["quota"],"storageVersionHash":"8uhSgffRX6w="},{"name":"resourcequotas/status","singularName":"","namespaced":true,"kind":"ResourceQuota","verbs":["get","patch","update"]},{"name":"secrets","singularName":"","namespaced":true,"kind":"Secret","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"storageVersionHash":"S6u1pOWzb84="},{"name":"serviceaccounts","singularName":"","namespaced":true,"kind":"ServiceAccount","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["sa"],"storageVersionHash":"pbx9ZvyFpBE="},{"name":"serviceaccounts/token","singularName":"","namespaced":true,"group":"authentication.k8s.io","version":"v1","kind":"TokenRequest","verbs":["create"]},{"name":"services","singularName":"","namespaced":true,"kind":"Service","verbs":["create","delete","deletecollection","get","list","patch","update","watch"],"shortNames":["svc"],"categories":["all"],"storageVersionHash":"0/CO1lhkEBI="},{"name":"services/proxy","singularName":"","namespaced":true,"kind":"ServiceProxyOptions","verbs":["create","delete","get","patch","update"]},{"name":"services/status","singularName":"","namespaced":true,"kind":"Service","verbs":["get","patch","update"]}]}
 

Expected results:

The normal oc request should be working.

Additional info:

There is no such issue for clusters with openshift-sdn with the same OpenShift version and same LoadBalancer service.

We suspected that it might be related to the MTU setting, but this cannot explain why OpenShiftSDN works well.

Another thing might be related is that the OpenShiftSDN is using iptables for service loadbalancing and OVN is dealing that within the OVN services.

 

Please let me know if any debug log/info is needed.

This is a clone of issue OCPBUGS-6621. The following is the description of the original issue:

Description of problem:

Image registry pods panic while deploying OCP in ap-southeast-4 AWS region

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

Deploy OCP in AWS ap-southeast-4 region

Steps to Reproduce:

Deploy OCP in AWS ap-southeast-4 region 

Actual results:

panic: Invalid region provided: ap-southeast-4

Expected results:

Image registry pods should come up with no errors

Additional info:

 

 

 

 

This is a clone of issue OCPBUGS-10990. The following is the description of the original issue:

This is a clone of issue OCPBUGS-10526. The following is the description of the original issue:

Description of problem:


Version-Release number of selected component (if applicable):

 4.13.0-0.nightly-2023-03-17-161027 

How reproducible:

Always

Steps to Reproduce:

1.  Create a GCP XPN cluster with flexy job template ipi-on-gcp/versioned-installer-xpn-ci, then 'oc descirbe node'

2. Check logs for cloud-network-config-controller pods

Actual results:


 % oc get nodes
NAME                                                          STATUS   ROLES                  AGE    VERSION
huirwang-0309d-r85mj-master-0.c.openshift-qe.internal         Ready    control-plane,master   173m   v1.26.2+06e8c46
huirwang-0309d-r85mj-master-1.c.openshift-qe.internal         Ready    control-plane,master   173m   v1.26.2+06e8c46
huirwang-0309d-r85mj-master-2.c.openshift-qe.internal         Ready    control-plane,master   173m   v1.26.2+06e8c46
huirwang-0309d-r85mj-worker-a-wsrls.c.openshift-qe.internal   Ready    worker                 162m   v1.26.2+06e8c46
huirwang-0309d-r85mj-worker-b-5txgq.c.openshift-qe.internal   Ready    worker                 162m   v1.26.2+06e8c46
 `oc describe node`, there is no related egressIP annotations 
% oc describe node huirwang-0309d-r85mj-worker-a-wsrls.c.openshift-qe.internal 
Name:               huirwang-0309d-r85mj-worker-a-wsrls.c.openshift-qe.internal
Roles:              worker
Labels:             beta.kubernetes.io/arch=amd64
                    beta.kubernetes.io/instance-type=n2-standard-4
                    beta.kubernetes.io/os=linux
                    failure-domain.beta.kubernetes.io/region=us-central1
                    failure-domain.beta.kubernetes.io/zone=us-central1-a
                    kubernetes.io/arch=amd64
                    kubernetes.io/hostname=huirwang-0309d-r85mj-worker-a-wsrls.c.openshift-qe.internal
                    kubernetes.io/os=linux
                    machine.openshift.io/interruptible-instance=
                    node-role.kubernetes.io/worker=
                    node.kubernetes.io/instance-type=n2-standard-4
                    node.openshift.io/os_id=rhcos
                    topology.gke.io/zone=us-central1-a
                    topology.kubernetes.io/region=us-central1
                    topology.kubernetes.io/zone=us-central1-a
Annotations:        csi.volume.kubernetes.io/nodeid:
                      {"pd.csi.storage.gke.io":"projects/openshift-qe/zones/us-central1-a/instances/huirwang-0309d-r85mj-worker-a-wsrls"}
                    k8s.ovn.org/host-addresses: ["10.0.32.117"]
                    k8s.ovn.org/l3-gateway-config:
                      {"default":{"mode":"shared","interface-id":"br-ex_huirwang-0309d-r85mj-worker-a-wsrls.c.openshift-qe.internal","mac-address":"42:01:0a:00:...
                    k8s.ovn.org/node-chassis-id: 7fb1870c-4315-4dcb-910c-0f45c71ad6d3
                    k8s.ovn.org/node-gateway-router-lrp-ifaddr: {"ipv4":"100.64.0.5/16"}
                    k8s.ovn.org/node-mgmt-port-mac-address: 16:52:e3:8c:13:e2
                    k8s.ovn.org/node-primary-ifaddr: {"ipv4":"10.0.32.117/32"}
                    k8s.ovn.org/node-subnets: {"default":["10.131.0.0/23"]}
                    machine.openshift.io/machine: openshift-machine-api/huirwang-0309d-r85mj-worker-a-wsrls
                    machineconfiguration.openshift.io/controlPlaneTopology: HighlyAvailable
                    machineconfiguration.openshift.io/currentConfig: rendered-worker-bec5065070ded51e002c566a9c5bd16a
                    machineconfiguration.openshift.io/desiredConfig: rendered-worker-bec5065070ded51e002c566a9c5bd16a
                    machineconfiguration.openshift.io/desiredDrain: uncordon-rendered-worker-bec5065070ded51e002c566a9c5bd16a
                    machineconfiguration.openshift.io/lastAppliedDrain: uncordon-rendered-worker-bec5065070ded51e002c566a9c5bd16a
                    machineconfiguration.openshift.io/reason: 
                    machineconfiguration.openshift.io/state: Done
                    volumes.kubernetes.io/controller-managed-attach-detach: true


 % oc logs cloud-network-config-controller-5cd96d477d-2kmc9  -n openshift-cloud-network-config-controller  
W0320 03:00:08.981493       1 client_config.go:618] Neither --kubeconfig nor --master was specified.  Using the inClusterConfig.  This might not work.
I0320 03:00:08.982280       1 leaderelection.go:248] attempting to acquire leader lease openshift-cloud-network-config-controller/cloud-network-config-controller-lock...
E0320 03:00:38.982868       1 leaderelection.go:330] error retrieving resource lock openshift-cloud-network-config-controller/cloud-network-config-controller-lock: Get "https://api-int.huirwang-0309d.qe.gcp.devcluster.openshift.com:6443/api/v1/namespaces/openshift-cloud-network-config-controller/configmaps/cloud-network-config-controller-lock": dial tcp: lookup api-int.huirwang-0309d.qe.gcp.devcluster.openshift.com: i/o timeout
E0320 03:01:23.863454       1 leaderelection.go:330] error retrieving resource lock openshift-cloud-network-config-controller/cloud-network-config-controller-lock: Get "https://api-int.huirwang-0309d.qe.gcp.devcluster.openshift.com:6443/api/v1/namespaces/openshift-cloud-network-config-controller/configmaps/cloud-network-config-controller-lock": dial tcp: lookup api-int.huirwang-0309d.qe.gcp.devcluster.openshift.com on 172.30.0.10:53: read udp 10.129.0.14:52109->172.30.0.10:53: read: connection refused
I0320 03:02:19.249359       1 leaderelection.go:258] successfully acquired lease openshift-cloud-network-config-controller/cloud-network-config-controller-lock
I0320 03:02:19.250662       1 controller.go:88] Starting node controller
I0320 03:02:19.250681       1 controller.go:91] Waiting for informer caches to sync for node workqueue
I0320 03:02:19.250693       1 controller.go:88] Starting secret controller
I0320 03:02:19.250703       1 controller.go:91] Waiting for informer caches to sync for secret workqueue
I0320 03:02:19.250709       1 controller.go:88] Starting cloud-private-ip-config controller
I0320 03:02:19.250715       1 controller.go:91] Waiting for informer caches to sync for cloud-private-ip-config workqueue
I0320 03:02:19.258642       1 controller.go:182] Assigning key: huirwang-0309d-r85mj-master-2.c.openshift-qe.internal to node workqueue
I0320 03:02:19.258671       1 controller.go:182] Assigning key: huirwang-0309d-r85mj-master-1.c.openshift-qe.internal to node workqueue
I0320 03:02:19.258682       1 controller.go:182] Assigning key: huirwang-0309d-r85mj-master-0.c.openshift-qe.internal to node workqueue
I0320 03:02:19.351258       1 controller.go:96] Starting node workers
I0320 03:02:19.351303       1 controller.go:102] Started node workers
I0320 03:02:19.351298       1 controller.go:96] Starting secret workers
I0320 03:02:19.351331       1 controller.go:102] Started secret workers
I0320 03:02:19.351265       1 controller.go:96] Starting cloud-private-ip-config workers
I0320 03:02:19.351508       1 controller.go:102] Started cloud-private-ip-config workers
E0320 03:02:19.589704       1 controller.go:165] error syncing 'huirwang-0309d-r85mj-master-1.c.openshift-qe.internal': error retrieving the private IP configuration for node: huirwang-0309d-r85mj-master-1.c.openshift-qe.internal, err: error retrieving the network interface subnets, err: googleapi: Error 404: The resource 'projects/openshift-qe/regions/us-central1/subnetworks/installer-shared-vpc-subnet-1' was not found, notFound, requeuing in node workqueue
E0320 03:02:19.615551       1 controller.go:165] error syncing 'huirwang-0309d-r85mj-master-0.c.openshift-qe.internal': error retrieving the private IP configuration for node: huirwang-0309d-r85mj-master-0.c.openshift-qe.internal, err: error retrieving the network interface subnets, err: googleapi: Error 404: The resource 'projects/openshift-qe/regions/us-central1/subnetworks/installer-shared-vpc-subnet-1' was not found, notFound, requeuing in node workqueue
E0320 03:02:19.644628       1 controller.go:165] error syncing 'huirwang-0309d-r85mj-master-2.c.openshift-qe.internal': error retrieving the private IP configuration for node: huirwang-0309d-r85mj-master-2.c.openshift-qe.internal, err: error retrieving the network interface subnets, err: googleapi: Error 404: The resource 'projects/openshift-qe/regions/us-central1/subnetworks/installer-shared-vpc-subnet-1' was not found, notFound, requeuing in node workqueue
E0320 03:02:19.774047       1 controller.go:165] error syncing 'huirwang-0309d-r85mj-master-0.c.openshift-qe.internal': error retrieving the private IP configuration for node: huirwang-0309d-r85mj-master-0.c.openshift-qe.internal, err: error retrieving the network interface subnets, err: googleapi: Error 404: The resource 'projects/openshift-qe/regions/us-central1/subnetworks/installer-shared-vpc-subnet-1' was not found, notFound, requeuing in node workqueue
E0320 03:02:19.783309       1 controller.go:165] error syncing 'huirwang-0309d-r85mj-master-1.c.openshift-qe.internal': error retrieving the private IP configuration for node: huirwang-0309d-r85mj-master-1.c.openshift-qe.internal, err: error retrieving the network interface subnets, err: googleapi: Error 404: The resource 'projects/openshift-qe/regions/us-central1/subnetworks/installer-shared-vpc-subnet-1' was not found, notFound, requeuing in node workqueue
E0320 03:02:19.816430       1 controller.go:165] error syncing 'huirwang-0309d-r85mj-master-2.c.openshift-qe.internal': error retrieving the private IP configuration for node: huirwang-0309d-r85mj-master-2.c.openshift-qe.internal, err: error retrieving the network interface subnets, err: googleapi: Error 404: The resource 'projects/openshift-qe/regions/us-central1/subnetworks/installer-shared-vpc-subnet-1' was not found, notFound, requeuing in node workqueue

Expected results:

EgressIP should work

Additional info:

It can be reproduced in  4.12 as well, not regression issue.

Description of problem:

On the alert details page and alerting rule details page, clicking on a field that has a popover help throws an uncaught JavaScript error.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Go to Observe > Alerting pages
2. Click on an alert (or go to the rules tab then click on a rule)
3. Click on one of the underlined fields (those that have a popover help)

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-3214. The following is the description of the original issue:

Description of problem:

The installer has logic that avoids adding the router CAs to the kubeconfig if the console is not available.  It's not clear why it does this, but it means that the router CAs don't get added when the console is deliberately disabled (it is now an optional capability in 4.12).

Version-Release number of selected component (if applicable):

Seen in 4.12+4.13

How reproducible:

Always, when starting a cluster w/o the Console capability

Steps to Reproduce:

1. Edit the install-config to set:
capabilities:
  baselineCapabilitySet: None
2. install the cluster
3. check the CAs in the kubeconfig, the wildcard route CA will be missing (compare it w/ a normal cluster)

Actual results:

router CAs missing

Expected results:

router CAs should be present

Additional info:

This needs to be backported to 4.12.

Description of problem:

Currently we are not gathering Machine objects. We got nomination for a rule that will use this resource.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-5548. The following is the description of the original issue:

Description of problem:
This is a follow-up on https://bugzilla.redhat.com/show_bug.cgi?id=2083087 and https://github.com/openshift/console/pull/12390

When creating a Deployment, DeploymentConfig, or Knative Service with enabled Pipeline, and then deleting it again with the enabled option "Delete other resources created by console" (only available on 4.13+ with the PR above) the automatically created Pipeline is not deleted.

When the user tries to create the same resource with a Pipeline again this fails with an error:

An error occurred
secrets "nodeinfo-generic-webhook-secret" already exists

Version-Release number of selected component (if applicable):
4.13

(we might want to backport this together with https://github.com/openshift/console/pull/12390 and OCPBUGS-5547)

How reproducible:
Always

Steps to Reproduce:

  1. Install OpenShift Pipelines operator (tested with 1.8.2)
  2. Create a new project
  3. Navigate to Add > Import from git and create an application
  4. Case 1: In the topology select the new resource and delete it
  5. Case 2: In the topology select the application group and delete the complete app

Actual results:
Case 1: Delete resources:

  1. Deployment (tries it twice!) $name
  2. Service $name
  3. Route $name
  4. ImageStream $name

Case 2: Delete application:

  1. Deployment (just once) $name
  2. Service $name
  3. Route $name
  4. ImageStream $name

Expected results:
Case 1: Delete resource:

  1. Delete Deployment $name should be called just once
  2. (Keep this deletion) Service $name
  3. (Keep this deletion) Route $name
  4. (Keep this deletion) ImageStream $name
  5. Missing deletion of the Tekton Pipeline $name
  6. Missing deletion of the Tekton TriggerTemplate with generated name trigger-template-$name-$random
  7. Missing deletion of the Secret $name-generic-webhook-secret
  8. Missing deletion of the Secret $name-github-webhook-secret

Case 2: Delete application:

  1. (Keep this deletion) Deployment $name
  2. (Keep this deletion) Service $name
  3. (Keep this deletion) Route $name
  4. (Keep this deletion) ImageStream $name
  5. Missing deletion of the Tekton Pipeline $name
  6. Missing deletion of the Tekton TriggerTemplate with generated name trigger-template-$name-$random
  7. Missing deletion of the Secret $name-generic-webhook-secret
  8. Missing deletion of the Secret $name-github-webhook-secret

Additional info:

aws-ebs-csi-driver-operator ServiceAccount does not include the HCP pull-secret in its imagePullSecrets. Thus, if a HostedCluster is created with a `pullSecret` that contains creds that the management cluster pull secret does not have, the image pull fails.

Description of problem:

https://github.com/openshift/api/pull/1186 - https://issues.redhat.com/browse/CONSOLE-3069 promoted ConsolePlugin CRD to v1.

The PR introduces also a conversion webhook from v1alpha1 to v1.

In new CRD version I18n ConsolePluginI18n is marked as optional.
The conversion webhook will not set a default valid ("Lazy"/"Preload") value writing the v1 object and a v1 object completely omitting spec.i18n will be accepted we no valid default value as well.

On the other side, at garbage collection time the object will be stuck forever due to the lack of a valid value for spec.i18n.loadType

Example,
create a v1 ConsolePlugin object:

cat <<EOF | oc apply -f -
apiVersion: console.openshift.io/v1
kind: ConsolePlugin
metadata:
  name: test472
spec:
  backend:
    service:
      basePath: /
      name: test472-service
      namespace: kubevirt-hyperconverged
      port: 9443
    type: Service
  displayName: Test 472 Plugin
EOF

Delete it in foreground mode:
stirabos@t14s:~$ oc delete consoleplugin test472 --timeout=30s --cascade='foreground' -v 7
I1011 18:20:03.255605   31610 loader.go:372] Config loaded from file:  /home/stirabos/.kube/config
I1011 18:20:03.266567   31610 round_trippers.go:463] DELETE https://api.ci-ln-krdzphb-72292.gcp-2.ci.openshift.org:6443/apis/console.openshift.io/v1/consoleplugins/test472
I1011 18:20:03.266581   31610 round_trippers.go:469] Request Headers:
I1011 18:20:03.266588   31610 round_trippers.go:473]     Accept: application/json
I1011 18:20:03.266594   31610 round_trippers.go:473]     Content-Type: application/json
I1011 18:20:03.266600   31610 round_trippers.go:473]     User-Agent: oc/4.11.0 (linux/amd64) kubernetes/fcf512e
I1011 18:20:03.266606   31610 round_trippers.go:473]     Authorization: Bearer <masked>
I1011 18:20:03.688569   31610 round_trippers.go:574] Response Status: 200 OK in 421 milliseconds
consoleplugin.console.openshift.io "test472" deleted
I1011 18:20:03.688911   31610 round_trippers.go:463] GET https://api.ci-ln-krdzphb-72292.gcp-2.ci.openshift.org:6443/apis/console.openshift.io/v1/consoleplugins?fieldSelector=metadata.name%3Dtest472
I1011 18:20:03.688919   31610 round_trippers.go:469] Request Headers:
I1011 18:20:03.688928   31610 round_trippers.go:473]     Authorization: Bearer <masked>
I1011 18:20:03.688935   31610 round_trippers.go:473]     Accept: application/json
I1011 18:20:03.688941   31610 round_trippers.go:473]     User-Agent: oc/4.11.0 (linux/amd64) kubernetes/fcf512e
I1011 18:20:03.840103   31610 round_trippers.go:574] Response Status: 200 OK in 151 milliseconds
I1011 18:20:03.840825   31610 round_trippers.go:463] GET https://api.ci-ln-krdzphb-72292.gcp-2.ci.openshift.org:6443/apis/console.openshift.io/v1/consoleplugins?fieldSelector=metadata.name%3Dtest472&resourceVersion=175205&watch=true
I1011 18:20:03.840848   31610 round_trippers.go:469] Request Headers:
I1011 18:20:03.840884   31610 round_trippers.go:473]     Accept: application/json
I1011 18:20:03.840907   31610 round_trippers.go:473]     User-Agent: oc/4.11.0 (linux/amd64) kubernetes/fcf512e
I1011 18:20:03.840928   31610 round_trippers.go:473]     Authorization: Bearer <masked>
I1011 18:20:03.972219   31610 round_trippers.go:574] Response Status: 200 OK in 131 milliseconds
error: timed out waiting for the condition on consoleplugins/test472

and in kube-controller-manager logs we see:

2022-10-11T16:25:32.192864016Z I1011 16:25:32.192788       1 garbagecollector.go:501] "Processing object" object="test472" objectUID=0cc46a01-113b-4bbe-9c7a-829a97d6867c kind="ConsolePlugin" virtual=false
2022-10-11T16:25:32.282303274Z I1011 16:25:32.282161       1 garbagecollector.go:623] remove DeleteDependents finalizer for item [console.openshift.io/v1/ConsolePlugin, namespace: , name: test472, uid: 0cc46a01-113b-4bbe-9c7a-829a97d6867c]
2022-10-11T16:25:32.304835330Z E1011 16:25:32.304730       1 garbagecollector.go:379] error syncing item &garbagecollector.node{identity:garbagecollector.objectReference{OwnerReference:v1.OwnerReference{APIVersion:"console.openshift.io/v1", Kind:"ConsolePlugin", Name:"test472", UID:"0cc46a01-113b-4bbe-9c7a-829a97d6867c", Controller:(*bool)(nil), BlockOwnerDeletion:(*bool)(nil)}, Namespace:""}, dependentsLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:1, readerWait:0}, dependents:map[*garbagecollector.node]struct {}{}, deletingDependents:true, deletingDependentsLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, beingDeleted:true, beingDeletedLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, virtual:false, virtualLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, owners:[]v1.OwnerReference(nil)}: ConsolePlugin.console.openshift.io "test472" is invalid: spec.i18n.loadType: Unsupported value: "": supported values: "Preload", "Lazy"

Version-Release number of selected component (if applicable):

OCP 4.12.0 ec4

How reproducible:

100% 

Steps to Reproduce:

1. cat <<EOF | oc apply -f -
apiVersion: console.openshift.io/v1
kind: ConsolePlugin
metadata:
  name: test472
spec:
  backend:
    service:
      basePath: /
      name: test472-service
      namespace: kubevirt-hyperconverged
      port: 9443
    type: Service
  displayName: Test 472 Plugin
EOF
2. oc delete consoleplugin test472 --timeout=30s --cascade='foreground' -v 7

Actual results:

2022-10-11T16:25:32.192864016Z I1011 16:25:32.192788       1 garbagecollector.go:501] "Processing object" object="test472" objectUID=0cc46a01-113b-4bbe-9c7a-829a97d6867c kind="ConsolePlugin" virtual=false
2022-10-11T16:25:32.282303274Z I1011 16:25:32.282161       1 garbagecollector.go:623] remove DeleteDependents finalizer for item [console.openshift.io/v1/ConsolePlugin, namespace: , name: test472, uid: 0cc46a01-113b-4bbe-9c7a-829a97d6867c]
2022-10-11T16:25:32.304835330Z E1011 16:25:32.304730       1 garbagecollector.go:379] error syncing item &garbagecollector.node{identity:garbagecollector.objectReference{OwnerReference:v1.OwnerReference{APIVersion:"console.openshift.io/v1", Kind:"ConsolePlugin", Name:"test472", UID:"0cc46a01-113b-4bbe-9c7a-829a97d6867c", Controller:(*bool)(nil), BlockOwnerDeletion:(*bool)(nil)}, Namespace:""}, dependentsLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:1, readerWait:0}, dependents:map[*garbagecollector.node]struct {}{}, deletingDependents:true, deletingDependentsLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, beingDeleted:true, beingDeletedLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, virtual:false, virtualLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, owners:[]v1.OwnerReference(nil)}: ConsolePlugin.console.openshift.io "test472" is invalid: spec.i18n.loadType: Unsupported value: "": supported values: "Preload", "Lazy"

Expected results:

Object correctly deleted

Additional info:

The issue doesn't happen with --cascade='background' which is the default on the CLI client

This bug is a backport clone of [Bugzilla Bug 2050230](https://bugzilla.redhat.com/show_bug.cgi?id=2050230). The following is the description of the original bug:

Description of problem:
In a large cluster, sdn daemonset can DoS the kube-apiserver with un-paginated LIST calls on high count resources.

Version-Release number of selected component (if applicable):

How reproducible:
NA

Steps to Reproduce:
NA

Actual results:
Kube API Server and Openshift API Server in one of the cluster keeps restarting, without proper exception. The cluster is not accessible.

Expected results:
Kube API Server and Openshift API Server should be stable.

Additional info:

The install_type field in telemetry data is not automatically set from the installer invoker value. Any values we wish to appear must be explicity converted to the corresponding install_type value.

Currently this make clusters installed with the agent-based installer (invoker agent-installer) invisible in telemetry.

Description of problem:

cloud-network-config-controller pod crashloops in proxy deployments as it tries to reach Openstack keystone API directly (not through the proxy) and there is no connectivity.

NAMESPACE                                          NAME                                                         READY   STATUS             RESTARTS          AGE
openshift-cloud-network-config-controller          cloud-network-config-controller-c4867b748-vlq9h              0/1     CrashLoopBackOff   158 (2m10s ago)   13h

$ oc -n openshift-cloud-network-config-controller logs -p cloud-network-config-controller-c4867b748-vlq9h
W0927 05:48:18.678947       1 client_config.go:617] Neither --kubeconfig nor --master was specified.  Using the inClusterConfig.  This might not work.
I0927 05:48:18.680269       1 leaderelection.go:248] attempting to acquire leader lease openshift-cloud-network-config-controller/cloud-network-config-controller-lock...
I0927 05:48:26.754377       1 leaderelection.go:258] successfully acquired lease openshift-cloud-network-config-controller/cloud-network-config-controller-lock
I0927 05:48:26.755413       1 openstack.go:121] Custom CA bundle found at location '/kube-cloud-config/ca-bundle.pem' - reading certificate information
F0927 05:48:28.233519       1 main.go:101] Error building cloud provider client, err: Get "https://10.46.44.10:13000/": dial tcp 10.46.44.10:13000: connect: no route to host
goroutine 51 [running]:
k8s.io/klog/v2.stacks(0x1)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:860 +0x8a
k8s.io/klog/v2.(*loggingT).output(0x37696c0, 0x3, 0x0, 0xc000636000, 0x1, {0x2cbcbd8?, 0x1?}, 0xc000438400?, 0x0)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:825 +0x686
k8s.io/klog/v2.(*loggingT).printfDepth(0x37696c0, 0x237798a?, 0x0, {0x0, 0x0}, 0x7fff81041af7?, {0x23a20d0, 0x2d}, {0xc00052c050, 0x1, ...})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:630 +0x1f2
k8s.io/klog/v2.(*loggingT).printf(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:612
k8s.io/klog/v2.Fatalf(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:1516
main.main.func1({0x26e5638, 0xc00016c040})
        /go/src/github.com/openshift/cloud-network-config-controller/cmd/cloud-network-config-controller/main.go:101 +0x26d
created by k8s.io/client-go/tools/leaderelection.(*LeaderElector).Run
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:211 +0x11bgoroutine 1 [select]:
k8s.io/apimachinery/pkg/util/wait.BackoffUntil(0xc00052bb60?, {0x26cee20, 0xc000581740}, 0x1, 0xc00052bb60)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:167 +0x135
k8s.io/apimachinery/pkg/util/wait.JitterUntil(0xc00016c080?, 0x60db88400, 0x0, 0x20?, 0x7fea470ec108?)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:133 +0x89
k8s.io/apimachinery/pkg/util/wait.Until(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:90
k8s.io/client-go/tools/leaderelection.(*LeaderElector).renew(0xc0000a8120, {0x26e5638?, 0xc00016c040?})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:268 +0xd0
k8s.io/client-go/tools/leaderelection.(*LeaderElector).Run(0xc0000a8120, {0x26e5638, 0xc00025fcc0})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:212 +0x12f
k8s.io/client-go/tools/leaderelection.RunOrDie({0x26e5638, 0xc00025fcc0}, {{0x26e7430, 0xc00062afa0}, 0x1fe5d61a00, 0x18e9b26e00, 0x60db88400, {0xc00065e630, 0xc000634810, 0x0}, ...})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:226 +0x94
main.main()
        /go/src/github.com/openshift/cloud-network-config-controller/cmd/cloud-network-config-controller/main.go:86 +0x450

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-26-050728

How reproducible:

Always

Steps to Reproduce:

1. Install OCP with proxy

Actual results:

Bootstrap failure and pod crashloop

Expected results:

Successful installation

Additional info:

Please find the must-gather here.

This is a clone of issue OCPBUGS-4701. The following is the description of the original issue:

Description of problem:

In at least 4.12.0-rc.0, a user with read-only access to ClusterVersion can see a "Control plane is hosted" banner (despite the control plane not being hosted), because hasPermissionsToUpdate is false, so canPerformUpgrade is false.

Version-Release number of selected component (if applicable):

4.12.0-rc.0. Likely more. I haven't traced it out.

How reproducible:

Always.

Steps to Reproduce:

1. Install 4.12.0-rc.0
2. Create a user with cluster-wide read-only permissions. For me, it's via binding to a sudoer ClusterRole. I'm not sure where that ClusterRole comes from, but it's:

$ oc get -o yaml clusterrole sudoer
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  annotations:
    rbac.authorization.kubernetes.io/autoupdate: "true"
  creationTimestamp: "2020-05-21T19:39:09Z"
  name: sudoer
  resourceVersion: "7715"
  uid: 28eb2ffa-dccd-47e8-a2d5-6a95e0e8b1e9
rules:
- apiGroups:
  - ""
  - user.openshift.io
  resourceNames:
  - system:admin
  resources:
  - systemusers
  - users
  verbs:
  - impersonate
- apiGroups:
  - ""
  - user.openshift.io
  resourceNames:
  - system:masters
  resources:
  - groups
  - systemgroups
  verbs:
  - impersonate

3. View /settings/cluster

Actual results:

See the "Control plane is hosted" banner.

Expected results:

Possible cases:

  • For me in my impersonate group, I can trigger updates via the command-line by using --as system:admin. I don't know if the console supports impersonation, or wants to mention the option if it does not.
  • For users with read-only access in stand-alone clusters, telling the user they are not authorized to update makes sense. Maybe mention that their cluster admins may be able to update, or just leave that unsaid.
  • For users with managed/dedicated branding, possibly point out that updates in that environment happen via OCM. And leave it up to OCM to decide if that user has access.
  • For users with externally-hosted control planes, possibly tell them this regardless of whether they have the ability to update via some external interface or not. For externally-hosted, Red-Hat-managed clusters, the interface will presumably be OCM. For externally-hosted, customer-managed clusters, there may be some ACM or other interface? I'm not sure. But the message of "this in-cluster web console is not where you configure this stuff, even if you are one of the people who can make these decisions for this cluster" will apply for all hosted situations.

Description of problem:

Clusters created with platform 'vsphere' in the install-config end up as type 'BareMetal' in the infrastructure CR.

Version-Release number of selected component (if applicable):

4.12.3

How reproducible:

100%

Steps to Reproduce:

1. Create a cluster through the agent installer with platform: vsphere in the install-config
2. oc get infrastructure cluster -o jsonpath='{.status.platform}' 

Actual results:

BareMetal

Expected results:

VSphere

Additional info:

The platform type is not being case converted ("vsphere" -> "VSphere") when constructing the AgentClusterInstall CR. When read by the assisted-service client, the platform reads as unknown and therefore the platform field is left blank when the Cluster object is created in the assisted API. Presumably that results in the correct default platform for the topology: None for SNO, BareMetal for everything else, but never VSphere. Since the platform VIPs are passed through a non-platform-specific API in assisted, everything worked but the resulting cluster would have the BareMetal platform.

Currently, we have this validation  https://github.com/openshift/installer/blob/master/pkg/asset/agent/installconfig_test.go#L103 which checks if the platform is none then the number of control planes should be 1 and workers should be zero.

We need another validation to check if the number of control planes is 1 and workers are zero, the in the install-config.yaml the platform can only be set as none and in agent-cluster-install.yaml, the platformType should only be set as none. If we try to do SNO (i.e. control planes is 1 and workers are zero)  with e.g. platform: baremetal then assisted will reject it, so we should catch it as early as possible

Description of problem:
Users on a disconnected cluster with a proxy could not import a Devfile (from GitHub).

The API call /api/devfile/ takes 30 seconds until it fails with 504 Gateway timeout.

Version-Release number of selected component (if applicable):
This might happen since 4.8

Tested this yet only on 4.12.0-0.nightly-2022-09-07-112008

How reproducible:
Always

Steps to Reproduce:

  1. Start a disconnected cluster with a proxy
  2. Open the browser network inspector and filter for /api/devfile
  3. Switch to Developer perspective
  4. Navigate to Add > Developer Catalog (All Services) > Devfiles
  5. Select a Devfile like Basic Go (https://github.com/devfile-samples/devfile-sample-go-basic.git)
  6. Press Create

Actual results:

  • Network call fails after 30 seconds
  • Import doesn't work

Expected results:

  • Import should create a Deployment and switch to topology view

Additional info:
The console Pod log contains this error:

E0909 10:28:18.448680 1 devfile-handler.go:74] Failed to parse devfile: failed to populateAndParseDevfile: Get "https://registry.devfile.io/devfiles/go": context deadline exceeded (Client.Timeout exceeded while awaiting headers)

This is a clone of issue OCPBUGS-2141. The following is the description of the original issue:

Description of problem:

4.12 cluster, no pv for prometheus, the doc still link to 4.8

# oc get co monitoring -o jsonpath='{.status.conditions}' | jq 'map(select(.type=="Degraded"))'
[
  {
    "lastTransitionTime": "2022-10-09T02:36:16Z",
    "message": "Prometheus is running without persistent storage which can lead to data loss during upgrades and cluster disruptions. Please refer to the official documentation to see how to configure storage for Prometheus: https://docs.openshift.com/container-platform/4.8/monitoring/configuring-the-monitoring-stack.html",
    "reason": "PrometheusDataPersistenceNotConfigured",
    "status": "False",
    "type": "Degraded"
  }
]

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-05-053337

How reproducible:

always

Steps to Reproduce:

1. no PVs for prometheus, check the monitoring operator status
2.
3.

Actual results:

the doc still link to 4.8

Expected results:

links to the latest doc

Additional info:

slack thread: 
https://coreos.slack.com/archives/G79AW9Q7R/p1665283462123389

This is a clone of issue OCPBUGS-6018. The following is the description of the original issue:

This is a public clone of OCPBUGS-3821

The MCO can sometimes render a rendered-config in the middle of an upgrade with old MCs, e.g.:

  1. the containerruntimeconfigcontroller creates a new containerruntimeconfig due to the update
  2. the template controller finishes re-creating the base configs
  3. the kubeletconfig errors long enough and doesn't finish until after 2

This will cause the render controller to create a new rendered MC that uses the OLD kubeletconfig-MC, which at best is a double reboot for 1 node, and at worst block the update and break maxUnavailable nodes per pool.

Description of problem:

InstanceMetadataTags are not supported in AWS C2S region(us-iso-x)

Version-Release number of selected component (if applicable):

 

How reproducible:

always

Steps to Reproduce:

1. OCP4.11 IPI Installation on AWS C2S regions
2. 
3. 

Actual results:

 

Expected results:

 

Additional info:

Actual Error: 

"Error launching resource Instance. Unsupported Operation Specifying InstanceMetadataTags is not yet supported"

There is a related fix on upstream:

resource/aws_instance: Handle regions where instance metadata tags are unsupported
https://github.com/hashicorp/terraform-provider-aws/pull/26631

This is a clone of issue OCPBUGS-3172. The following is the description of the original issue:

Customer is trying to install the Logging operator, which appears to attempt to install a dynamic plugin. The operator installation fails in the console because permissions aren't available to "patch resource consoles".

We shouldn't block operator installation if permission issues prevent dynamic plugin installation.

This is an OSD cluster, presumably for a customer with "cluster-admin", although it may be a paired down permission set called "dedicated-admin".

See https://docs.google.com/document/d/1hYS-bm6aH7S6z7We76dn9XOFcpi9CGYcGoJys514YSY/edit for permissions investigation work on OSD

Description of problem:

OLM has a dependency on openshift/cluster-policy-controller. This project had dependencies with v0.0.0 versions, which due to a bug in ART was causing issues building the olm image. To fix this, we have to update the dependencies in the cluster-policy-controller project to point to actual versions.

This was already done:
 * https://github.com/openshift/cluster-policy-controller/pull/103
 * https://github.com/openshift/cluster-policy-controller/pull/101

And these changes already made it to 4.14 and 4.13 branches of the cluster-policy-controller.

The backport to 4.12 is: https://github.com/openshift/cluster-policy-controller/pull/102

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

In many cases, the /dev/disk/by-path symlink is the only way to stably identify a disk without having prior knowledge of the hardware from some external source (e.g. a spreadsheet of disk serial numbers). It should be possible to specify this path in the root device hints.
This is fixed by the first commit in the upstream Metal³ PR https://github.com/metal3-io/baremetal-operator/pull/1264

libovsdb builds transaction log messages for every transaction and then throws them away if the log level is not 4 or above. This wastes a bunch of CPU at scale and increases pod ready latency.

There is capacity limit on egressIP for different cloud provider, for example, GCP, the limit is 10.

If the number of egressIP added to hostsubnet exceeds the capability limit, it is expected some logging message is emitted to event log, that can be seen through "oc get event"

 

On a GCP with SDN plugin, configure egressCIDRs on one worker node, configured 12 netnamespaces, each has 1 egressIP configured, the total number of egressIP for the hostsubnet has exceeded its capacity limit of 10.   No event log was seen to indicate that the number of egressIP for the hostsubnet has exceeded the limit.

$ oc get clusterversion
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.0-0.nightly-2022-08-02-014045   True        False         160m    Cluster version is 4.11.0-0.nightly-2022-08-02-014045

 

See attachment for more details.

 

Description of problem:

After IPI installing a 3-node Hub Cluster, and converting them to dual stack, fd69::/125 address is seen in the Baremetal br-ex interface

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

Ranodmly reproduced and this IP is assigned in one of the 3 master hub cluster nodes

Steps to Reproduce:

1. IPI install 4.12.0
2. Use the Convert from IPv4/IPv6 dual stack procedure. 
3. 

Actual results:

Check for the IP fd69::/125 in the br-ex interface

OVN CrashLoopBackOff

Expected results:

The IP is a internal OVNKUBE IP, and it should not appear on the interface.
fd69::2/125 should be present on br-ex, but make sure fd69::2 does not :

  1. show up as an address in the node Status.Addresses list at all
  2. exist in any Node object annotations

Additional info:

This is one of the issues in IPv6 that is discovered, the other issue is linked here as well.

This is a clone of issue OCPBUGS-12450. The following is the description of the original issue:

Description of problem:

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-3235. The following is the description of the original issue:

Description of problem:

Frequently we see the loading state of the topology view, even when there aren't many resources in the project.

Including an example

Prerequisites (if any, like setup, operators/versions):

Steps to Reproduce

  1. load topology
  2. if it loads successfully, keep trying  until it fails to load

Actual results:

topology will sometimes hang with the loading indicator showing indefinitely

Expected results:

topology should load consistently without fail

Reproducibility (Always/Intermittent/Only Once):

intermittent

Build Details:

4.9

Additional info:

This is a clone of issue OCPBUGS-4357. The following is the description of the original issue:

Description of problem:

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-3228. The following is the description of the original issue:

While starting a Pipelinerun using UI, and in the process of providing the values on "Start Pipeline" , the IBM Power Customer (Deepak Shetty from IBM) has tried creating credentials under "Advanced options" with "Image Registry Credentials" (Authenticaion type). When the IBM Customer verified the credentials from  Secrets tab (in Workloads) , the secret was found in broken state. Screenshot of the broken secret is attached. 

The issue has been observed on OCP4.8, OCP4.9 and OCP4.10.

We should deprecate and eventually remove react-helmet as a shared plugin dependency. This dependency is small, and plugins can bring their own version if needed.

This requires updated our webpack plugin to allow dependency fallbacks when a shared dependency is not present.

cc Vojtech Szocs 

 

AC:

  • Update docs in the GitHub pages to state that we are deprecating the react-helmet as a shared plugin dependency

Description of the problem:

Noticed there were no thread IDs in the assisted-installer logs when debugging 240 node cluster deployment with MCE (slack thread) making it difficult to debug.

How reproducible: 100%

 

Steps to reproduce:

1. Create cluster using assisted service and start the install 

2. Look at the assisted-installer logs 

Actual results:

Logs look like

time="2022-07-14T16:17:31Z" level=info msg="Start complete installation step, with params success: true, error info: " 

Expected results: Thread ID would also print so we can understand which thread it came from


Adding setReportCaller to true will also help

Description of problem:

When using the agent based instller to zero-touch provision the cluster. If the network bandwidth is low, and the assisted-service or the assisted-service fails to pull the docker image within the timeout. The create-cluster-and-infraenv, apply-host-config, and start-cluster-installation services will be deactivated due to dependency failed. The process will be blocked, and require enable & start the service manually.

Version-Release number of selected component (if applicable):

openshift-install 4.11.0
built from commit 863cd1ea823559116e26de327705ed72ccdede8f
release image quay.io/openshift-release-dev/ocp-release@sha256:300bce8246cf880e792e106607925de0a404484637627edf5f517375517d54a4
release architecture amd64

How reproducible:

Install Openshift with agent based installer with local mirror.

Steps to Reproduce:

1.Stop the local registry or limit the network bandwidth to make assisted-service-pod.service or assisted-service.service fails to started within the 90s timeout.
2.Start the local registry or mannully pull the image on the node0. 3.

Actual results:

When using the agent based instller to zero-touch pprovision  the cluster. If the network bandwidth is low, and the assisted-service or the assisted-service fails to pull the docker image within the timeout. The create-cluster-and-infraenv, apply-host-config, and start-cluster-installation services will be deactivated due to dependency failed. The process will be blocked, and require enable & start the service manually.

Expected results:

Provision start after the assisted-service started.

Additional info:

Given:
assisted-service-pod.service requires assisted-service-db.service assisted-service.service
assisted-service.service BindsTo=assisted-service-pod.service
create-cluster-and-infraenv.service Requires=assisted-service.service and PartOf=assisted-service-pod.service
apply-host-config.service Requires=create-cluster-and-infraenv.service
start-cluster-installation.service Requires=apply-host-config.service
Requires= "Configures requirement dependencies on other units. If this unit gets activated, the units listed here will be activated as well. If one of the other units gets deactivated or its activation fails, this unit will be deactivated."When assisted-service-pod.service starts, assisted-service-db.service and assisted-service.service also be started,
Once assisted-service-pod.service fails to be started, assisted-service.service also fail to be started due to "BindsTo=assisted-service-pod.service".
Then dependency failed for create-cluster-and-infraenv.service due to Requires=assisted-service.service which activation fails, Therefore it will be deactived.
Then dependency failed for apply-host-config.service, due to Requires=create-cluster-and-infraenv.service which activation fails, Therefore it will be deactived.
Then dependency failed for start-cluster-installation.service, due to Requires=apply-host-config.service which activation fails, Therefore it will be deactived.Then assisted-service-pod.service restarts, assisted-service.service and assisted-service-db.service restarts as well, since they are binded to assisted-service-pod.service.
However, create-cluster-and-infraenv.service apply-host-config.service and start-cluster-installation.service was be deactivated, they requires to be activate mannully.Eventually, assisted-service started and hang with waitting for create infraenv. The provisioning is blocked.

Description of problem:

OCPBUGS-3499 and OCPBUGS-3501 both require a more recent version of openshift/library-go containing the shared validation and host-assignment logic.

Description of problem:

On Make Serverless page, to change values of the inputs minpod, maxpod and concurrency fields, we need to click the ‘ + ’ or ‘ - ', it can't be changed by typing in it.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

always

Steps to Reproduce:

1. Create a deployment workload from import from git
2. Right click on workload and select Make Serverless option
3. Check functioning of inputs minpod, maxpod etc.

Actual results:

To change values of the inputs minpod, maxpod and concurrency fields, we need to click the ‘ + ’ or ‘ - ', it can't be changed by typing in it.

Expected results:

We can change values of the inputs minpod, maxpod and concurrency fields, by clicking the ‘ + ’ or ‘ - ' and also by typing in it.

Additional info:

Works fine in v4.11

Description of problem:

The TestReloadInterval E2E test has completely wrong validations in which the min value should be 1s, not 5s.

But there is a race condition which allow these tests to sometimes pass due to the last test condition.

Therefore, failures in CI are actually correct, and successes are wrong based on the E2E conditions.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

50%

Steps to Reproduce:

1.Run TestReloadInterval E2E test (make test-e2e TEST=TestReloadInterval)

Actual results:

Sometimes fails on 5us test case:

reloadinterval_test.go:106: router deployment not updated with RELOAD_INTERVAL=5s: timed out waiting for the condition

Expected results:

Should pass E2E

Additional info:

 

 

 

 

Description of problem:

NodePort port not accessible

Version-Release number of selected component (if applicable):

OCP 4.8.20

How reproducible:

$oc -n ui-nprd get services -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
docker-registry ClusterIP 10.201.219.240 <none> 5000/TCP 24d app=registry
docker-registry-lb LoadBalancer 10.201.252.253 internal-xxxxxx.xx-xxxx-1.elb.amazonaws.com 5000:30779/TCP 3d22h app=registry
docker-registry-np NodePort 10.201.216.26 <none> 5000:32428/TCP 3d16h app=registry

$oc debug node/ip-xxx.ca-central-1.compute.internal
Starting pod/ip-xxx.ca-central-1computeinternal-debug ...
To use host binaries, run `chroot /host`
Pod IP: 10.81.23.96
If you don't see a command prompt, try pressing enter.
sh-4.2# chroot /host
sh-4.4# nc -vz 10.81.23.96 32428
Ncat: Version 7.70 ( https://nmap.org/ncat )
Ncat: Connection timed out.

In a new-created namespaces the same deployment works:

[RHEL7:> oc project
Using project "test-c1" on server "https://api.xx.xx.xxxx.xx.xx:6443".
[RHEL7:- ~/tmp]> oc port-forward service/docker-registry-np 5000:5000
Forwarding from 127.0.0.1:5000 -> 5000

[1]+ Stopped oc4 port-forward service/docker-registry-np 5000:5000
[RHEL7: ~/tmp]> bg %1
[1]+ oc4 port-forward service/docker-registry-np 5000:5000 &
[RHEL7: ~/tmp]> nc -v localhost 5000
Ncat: Version 7.50 ( https://nmap.org/ncat )
Ncat: Connected to 127.0.0.1:5000.
Handling connection for 5000

[RHEL7: ~/tmp]> kill %1
[RHEL7: ~/tmp]>
[1]+ Terminated oc4 port-forward service/docker-registry-np 5000:5000
[RHEL7: ~/tmp]> oc get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
docker-registry-np NodePort 10.201.224.174 <none> 5000:31793/TCP 68s

[RHEL7: ~/tmp]> oc get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
registry-75b7c7fd94-rx29j 1/1 Running 0 7m5s 10.201.1.29 ip-xxx.ca-central-1.compute.internal <none> <none>
[RHEL7: ~/tmp]> oc debug node/ip-xxx.ca-central-1.compute.internal
Starting pod/ip-xxxca-central-1computeinternal-debug ...
To use host binaries, run `chroot /host`
Pod IP: 10.81.23.87
If you don't see a command prompt, try pressing enter.
sh-4.2# chroot /host
sh-4.4# nc -v 10.81.23.87 31793
Ncat: Version 7.70 ( https://nmap.org/ncat )
Ncat: Connected to 10.81.23.87:31793.

Actual results:

  • Working on new created namespace
  • Not working on already created namespace

Expected results:

  • Suppose to work on all namespaces.

Additional info:

  • This cluster get upgrade from 4.7.x to 4.8 and then they manually enable OVN.
  • The issue was happening on all namespaces but after restarting the ovnkube-master-xxxx pods only the newly created namespaces work.

Customers have introduced Openshift using CloudFormation in "Example 4.55. CloudFormation template for the VPC", referring to the document below.
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/installing/index#installing-restricted-networks-aws
CloudFormation uses python3.7 with Lambda.
Since it will be the EOL of Python 3.7, what kind of effect will it have if it becomes unusable?
Is there any immediate effect? Will there be any impact when adding worker nodes?
OCP Version & Channel: 4.10
Cloud Platform: AWS

This is a clone of issue OCPBUGS-7102. The following is the description of the original issue:

Description of problem:

https://github.com/openshift/operator-framework-olm/blob/7ec6b948a148171bd336750fed98818890136429/staging/operator-lifecycle-manager/pkg/controller/operators/olm/plugins/downstream_csv_namespace_labeler_plugin_test.go#L309

has a dependency on creation of a next-version release branch.

 

Version-Release number of selected component (if applicable):

4.13

How reproducible:

 

Steps to Reproduce:

1. clone operator-framework/operator-framework-olm
2. make unit/olm
3. deal with a really bumpy first-time kubebuilder/envtest install experience
4. profit

 

 

Actual results:

error

Expected results:

pass

Additional info:

 

 

This is a clone of issue OCPBUGS-266. The following is the description of the original issue:

Description of problem: I am working with a customer who uses the web console.  From the Developer Perspective's Project Access tab, they cannot differentiate between users and groups and furthermore cannot add groups from this web console.  This has led to confusion whether existing resources were in fact users or groups, and furthermore they have added users when they intended to add groups instead.  What we really need is a third column in the Project Access tab that says whether a resource is a user or group.

 

Version-Release number of selected component (if applicable): This is an issue in OCP 4.10 and 4.11, and I presume future versions as well

How reproducible: Every time.  My customer is running on ROSA, but I have determined this issue to be general to OpenShift.

Steps to Reproduce:

From the oc cli, I create a group and add a user to it.

$ oc adm groups new techlead
group.user.openshift.io/techlead created
$ oc adm groups add-users techlead admin
group.user.openshift.io/techlead added: "admin"
$ oc get groups
NAME                                     USERS
cluster-admins                           
dedicated-admins                         admin
techlead   admin
I create a new namespace so that I can assign a group project level access:

$ oc new-project my-namespace

$ oc adm policy add-role-to-group edit techlead -n my-namespace
I then went to the web console -> Developer perspective -> Project -> Project Access.  I verified the rolebinding named 'edit' is bound to a group named 'techlead'.

$ oc get rolebinding
NAME                                                              ROLE                                   AGE
admin                                                             ClusterRole/admin                      15m
admin-dedicated-admins                                            ClusterRole/admin                      15m
admin-system:serviceaccounts:dedicated-admin                      ClusterRole/admin                      15m
dedicated-admins-project-dedicated-admins                         ClusterRole/dedicated-admins-project   15m
dedicated-admins-project-system:serviceaccounts:dedicated-admin   ClusterRole/dedicated-admins-project   15m
edit                                                              ClusterRole/edit                       2m18s
system:deployers                                                  ClusterRole/system:deployer            15m
system:image-builders                                             ClusterRole/system:image-builder       15m
system:image-pullers                                              ClusterRole/system:image-puller        15m

$ oc get rolebinding edit -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  creationTimestamp: "2022-08-15T14:16:56Z"
  name: edit
  namespace: my-namespace
  resourceVersion: "108357"
  uid: 4abca27d-08e8-43a3-b9d3-d20d5c294bbe
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: edit
subjects:

  • apiGroup: rbac.authorization.k8s.io
      kind: Group
      name: techlead
    Now, from the same Project Access tab in the web console, I added the developer with role "View".  From this web console, it is unclear whether developer and techlead are users or groups.

Now back to the CLI, I view the newly created rolebinding named 'developer-view-c15b720facbc8deb', and find that the "View" role is assigned to a user named 'developer', rather than a group.

$ oc get rolebinding                                                                      
NAME                                                              ROLE                                   AGE
admin                                                             ClusterRole/admin                      17m
admin-dedicated-admins                                            ClusterRole/admin                      17m
admin-system:serviceaccounts:dedicated-admin                      ClusterRole/admin                      17m
dedicated-admins-project-dedicated-admins                         ClusterRole/dedicated-admins-project   17m
dedicated-admins-project-system:serviceaccounts:dedicated-admin   ClusterRole/dedicated-admins-project   17m
edit                                                              ClusterRole/edit                       4m25s
developer-view-c15b720facbc8deb     ClusterRole/view                       90s
system:deployers                                                  ClusterRole/system:deployer            17m
system:image-builders                                             ClusterRole/system:image-builder       17m
system:image-pullers                                              ClusterRole/system:image-puller        17m
[10:21:21] kechung:~ $ oc get rolebinding developer-view-c15b720facbc8deb -o yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  creationTimestamp: "2022-08-15T14:19:51Z"
  name: developer-view-c15b720facbc8deb
  namespace: my-namespace
  resourceVersion: "113298"
  uid: cc2d1b37-922b-4e9b-8e96-bf5e1fa77779
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: view
subjects:

  • apiGroup: rbac.authorization.k8s.io
      kind: User
      name: developer

So in conclusion, from the Project Access tab, we're unable to add groups and unable to differentiate between users and groups.  This is in essence our ask for this RFE.

 

Actual results:

Developer perspective -> Project -> Project Access tab shows a list of resources which can be users or groups, but does not differentiate between them.  Furthermore, when we add resources, they are only users and there is no way to add a group from this tab in the web console.

 

Expected results:

Should have the ability to add groups and differentiate between users and groups.  Ideally, we're looking at a third column for user or group.

 

Additional info:

Description of problem:

Similar to OCPBUGS-11636 ccoctl needs to be updated to account for the s3 bucket changes described in https://aws.amazon.com/blogs/aws/heads-up-amazon-s3-security-changes-are-coming-in-april-of-2023/

these changes have rolled out to us-east-2 and China regions as of today and will roll out to additional regions in the near future

See OCPBUGS-11636 for additional information

Version-Release number of selected component (if applicable):

 

How reproducible:

Reproducible in affected regions.

Steps to Reproduce:

1. Use "ccoctl aws create-all" flow to create STS infrastructure in an affected region like us-east-2. Notice that document upload fails because the s3 bucket is created in a state that does not allow usage of ACLs with the s3 bucket.

Actual results:

./ccoctl aws create-all --name abutchertestue2 --region us-east-2 --credentials-requests-dir ./credrequests --output-dir _output
2023/04/11 13:01:06 Using existing RSA keypair found at _output/serviceaccount-signer.private
2023/04/11 13:01:06 Copying signing key for use by installer
2023/04/11 13:01:07 Bucket abutchertestue2-oidc created
2023/04/11 13:01:07 Failed to create Identity provider: failed to upload discovery document in the S3 bucket abutchertestue2-oidc: AccessControlListNotSupported: The bucket does not allow ACLs
        status code: 400, request id: 2TJKZC6C909WVRK7, host id: zQckCPmozx+1yEhAj+lnJwvDY9rG14FwGXDnzKIs8nQd4fO4xLWJW3p9ejhFpDw3c0FE2Ggy1Yc=

Expected results:

"ccoctl aws create-all" successfully creates IAM and S3 infrastructure. OIDC discovery and JWKS documents are successfully uploaded to the S3 bucket and are publicly accessible.

Additional info:

 

Description of problem:

When enabling OvS HWOL on 4.12.0 nightly, traffic does not pass between pods.

Version-Release number of selected component (if applicable):

4.12.0 nightly

How reproducible:

Always

Steps to Reproduce:

1. Create 2 pods with sriov and try to ping between them (same node or different node)

Actual results:

No Traffic Passes (Ping or other)

Expected results:

Traffic Passes (Ping or other)

Additional info:

Missing this commit in 4.12 branch
https://github.com/openshift/ovn-kubernetes/commit/37c6c1d7039fd4c8f3cca560691a254e720172de

Description of problem:

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1. Go to the detail page of some Deployments with PDB connected to it
2. Click Edit PDB from the kebab menu
3. Inspect the second input box under the `Availability requirement `

Actual results: The name and aria-label attributes always show minAvailable

Expected results: They should be consistent with the first input box

Additional info:

Description of problem:

Installing 1000+ SNOs via ACM/MCE via ZTP with gitops, a small percentage of clusters end up never completing install because the monitoring operator does not reconcile to available.

# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig get clusterversion
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version             False       True          16h     Unable to apply 4.11.0: the cluster operator monitoring has not yet successfully rolled out
# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig get co monitoring
NAME         VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
monitoring             False       True          True       15h     Rollout of the monitoring stack failed and is degraded. Please investigate the degraded status error. 

 

Version-Release number of selected component (if applicable):

  • Hub OCP and SNO OCP - 4.11.0
  • ACM - 2.6.0-DOWNSTREAM-2022-08-11-23-41-09  (FC5)

 

How reproducible:

  • 2 out of 23 failures out of 1728 installs
  • ~8% of the failures are because of this issue
  • failure rate of ~.1% of the total installs

 

Additional info:

 

# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig get po -n openshift-monitoring
NAME                                                     READY   STATUS              RESTARTS   AGE
alertmanager-main-0                                      0/6     ContainerCreating   0          15h
cluster-monitoring-operator-54dd78cc74-l5w24             2/2     Running             0          15h
kube-state-metrics-b6455c4dc-8hcfn                       3/3     Running             0          15h
node-exporter-k7899                                      2/2     Running             0          15h
openshift-state-metrics-7984888fbd-cl67v                 3/3     Running             0          15h
prometheus-adapter-785bf4f975-wgmnh                      1/1     Running             0          15h
prometheus-k8s-0                                         0/6     Init:0/1            0          15h
prometheus-operator-74d8754ff7-9zrgw                     2/2     Running             0          15h
prometheus-operator-admission-webhook-6665fb687d-c5jgv   1/1     Running             0          15h
thanos-querier-575496c665-jcc8l                          6/6     Running             0          15h 
# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig describe po -n openshift-monitoring alertmanager-main-0
Name:                 alertmanager-main-0
Namespace:            openshift-monitoring
Priority:             2000000000
Priority Class Name:  system-cluster-critical
Node:                 sno01219/fc00:1001::8aa
Start Time:           Mon, 15 Aug 2022 23:53:39 +0000
Labels:               alertmanager=main
                      app.kubernetes.io/component=alert-router
                      app.kubernetes.io/instance=main
                      app.kubernetes.io/managed-by=prometheus-operator
                      app.kubernetes.io/name=alertmanager
                      app.kubernetes.io/part-of=openshift-monitoring
                      app.kubernetes.io/version=0.24.0
                      controller-revision-hash=alertmanager-main-fcf8dd5fb
                      statefulset.kubernetes.io/pod-name=alertmanager-main-0
Annotations:          kubectl.kubernetes.io/default-container: alertmanager
                      openshift.io/scc: nonroot
Status:               Pending
IP:
IPs:                  <none>
Controlled By:        StatefulSet/alertmanager-main
Containers:
  alertmanager:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:91308d35c1e56463f55c1aaa519ff4de7335d43b254c21abdb845fc8c72821a1
    Image ID:
    Ports:         9094/TCP, 9094/UDP
    Host Ports:    0/TCP, 0/UDP
    Args:
      --config.file=/etc/alertmanager/config/alertmanager.yaml
      --storage.path=/alertmanager
      --data.retention=120h
      --cluster.listen-address=
      --web.listen-address=127.0.0.1:9093
      --web.external-url=https:/console-openshift-console.apps.sno01219.rdu2.scalelab.redhat.com/monitoring
      --web.route-prefix=/
      --cluster.peer=alertmanager-main-0.alertmanager-operated:9094
      --cluster.reconnect-timeout=5m
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     4m
      memory:  40Mi
    Environment:
      POD_IP:   (v1:status.podIP)
    Mounts:
      /alertmanager from alertmanager-main-db (rw)
      /etc/alertmanager/certs from tls-assets (ro)
      /etc/alertmanager/config from config-volume (rw)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy from secret-alertmanager-kube-rbac-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy-metric from secret-alertmanager-kube-rbac-proxy-metric (ro)
      /etc/alertmanager/secrets/alertmanager-main-proxy from secret-alertmanager-main-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-main-tls from secret-alertmanager-main-tls (ro)
      /etc/pki/ca-trust/extracted/pem/ from alertmanager-trusted-ca-bundle (ro)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  config-reloader:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:209e20410ec2d3d7a502f568d2b7fe1cd1beadcb36fff2d1e6f59d77be3200e3
    Image ID:
    Port:          <none>
    Host Port:     <none>
    Command:
      /bin/prometheus-config-reloader
    Args:
      --listen-address=localhost:8080
      --reload-url=http://localhost:9093/-/reload
      --watched-dir=/etc/alertmanager/config
      --watched-dir=/etc/alertmanager/secrets/alertmanager-main-tls
      --watched-dir=/etc/alertmanager/secrets/alertmanager-main-proxy
      --watched-dir=/etc/alertmanager/secrets/alertmanager-kube-rbac-proxy
      --watched-dir=/etc/alertmanager/secrets/alertmanager-kube-rbac-proxy-metric
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  10Mi
    Environment:
      POD_NAME:  alertmanager-main-0 (v1:metadata.name)
      SHARD:     -1
    Mounts:
      /etc/alertmanager/config from config-volume (ro)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy from secret-alertmanager-kube-rbac-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy-metric from secret-alertmanager-kube-rbac-proxy-metric (ro)
      /etc/alertmanager/secrets/alertmanager-main-proxy from secret-alertmanager-main-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-main-tls from secret-alertmanager-main-tls (ro)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  alertmanager-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:140f8947593d92e1517e50a201e83bdef8eb965b552a21d3caf346a250d0cf6e
    Image ID:
    Port:          9095/TCP
    Host Port:     0/TCP
    Args:
      -provider=openshift
      -https-address=:9095
      -http-address=
      -email-domain=*
      -upstream=http://localhost:9093
      -openshift-sar=[{"resource": "namespaces", "verb": "get"}, {"resource": "alertmanagers", "resourceAPIGroup": "monitoring.coreos.com", "namespace": "openshift-monitoring", "verb": "patch", "resourceName": "non-existant"}]
      -openshift-delegate-urls={"/": {"resource": "namespaces", "verb": "get"}, "/": {"resource":"alertmanagers", "group": "monitoring.coreos.com", "namespace": "openshift-monitoring", "verb": "patch", "name": "non-existant"}}
      -tls-cert=/etc/tls/private/tls.crt
      -tls-key=/etc/tls/private/tls.key
      -client-secret-file=/var/run/secrets/kubernetes.io/serviceaccount/token
      -cookie-secret-file=/etc/proxy/secrets/session_secret
      -openshift-service-account=alertmanager-main
      -openshift-ca=/etc/pki/tls/cert.pem
      -openshift-ca=/var/run/secrets/kubernetes.io/serviceaccount/ca.crt
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  20Mi
    Environment:
      HTTP_PROXY:
      HTTPS_PROXY:
      NO_PROXY:
    Mounts:
      /etc/pki/ca-trust/extracted/pem/ from alertmanager-trusted-ca-bundle (ro)
      /etc/proxy/secrets from secret-alertmanager-main-proxy (rw)
      /etc/tls/private from secret-alertmanager-main-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  kube-rbac-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:b5e1c69d005727e3245604cfca7a63e4f9bc6e15128c7489e41d5e967305089e
    Image ID:
    Port:          9092/TCP
    Host Port:     0/TCP
    Args:
      --secure-listen-address=0.0.0.0:9092
      --upstream=http://127.0.0.1:9096
      --config-file=/etc/kube-rbac-proxy/config.yaml
      --tls-cert-file=/etc/tls/private/tls.crt
      --tls-private-key-file=/etc/tls/private/tls.key
      --tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
      --logtostderr=true
      --tls-min-version=VersionTLS12
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        1m
      memory:     15Mi
    Environment:  <none>
    Mounts:
      /etc/kube-rbac-proxy from secret-alertmanager-kube-rbac-proxy (rw)
      /etc/tls/private from secret-alertmanager-main-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  kube-rbac-proxy-metric:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:b5e1c69d005727e3245604cfca7a63e4f9bc6e15128c7489e41d5e967305089e
    Image ID:
    Port:          9097/TCP
    Host Port:     0/TCP
    Args:
      --secure-listen-address=0.0.0.0:9097
      --upstream=http://127.0.0.1:9093
      --config-file=/etc/kube-rbac-proxy/config.yaml
      --tls-cert-file=/etc/tls/private/tls.crt
      --tls-private-key-file=/etc/tls/private/tls.key
      --tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
      --client-ca-file=/etc/tls/client/client-ca.crt
      --logtostderr=true
      --allow-paths=/metrics
      --tls-min-version=VersionTLS12
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        1m
      memory:     15Mi
    Environment:  <none>
    Mounts:
      /etc/kube-rbac-proxy from secret-alertmanager-kube-rbac-proxy-metric (ro)
      /etc/tls/client from metrics-client-ca (ro)
      /etc/tls/private from secret-alertmanager-main-tls (ro)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  prom-label-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:2550b2cbdf864515b1edacf43c25eb6b6f179713c1df34e51f6e9bba48d6430a
    Image ID:
    Port:          <none>
    Host Port:     <none>
    Args:
      --insecure-listen-address=127.0.0.1:9096
      --upstream=http://127.0.0.1:9093
      --label=namespace
      --error-on-replace
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        1m
      memory:     20Mi
    Environment:  <none>
    Mounts:
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
Conditions:
  Type              Status
  Initialized       True
  Ready             False
  ContainersReady   False
  PodScheduled      True
Volumes:
  config-volume:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  alertmanager-main-generated
    Optional:    false
  tls-assets:
    Type:                Projected (a volume that contains injected data from multiple sources)
    SecretName:          alertmanager-main-tls-assets-0
    SecretOptionalName:  <nil>
  secret-alertmanager-main-tls:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  alertmanager-main-tls
    Optional:    false
  secret-alertmanager-main-proxy:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  alertmanager-main-proxy
    Optional:    false
  secret-alertmanager-kube-rbac-proxy:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  alertmanager-kube-rbac-proxy
    Optional:    false
  secret-alertmanager-kube-rbac-proxy-metric:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  alertmanager-kube-rbac-proxy-metric
    Optional:    false
  alertmanager-main-db:
    Type:       EmptyDir (a temporary directory that shares a pod's lifetime)
    Medium:
    SizeLimit:  <unset>
  metrics-client-ca:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      metrics-client-ca
    Optional:  false
  alertmanager-trusted-ca-bundle:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      alertmanager-trusted-ca-bundle-2rsonso43rc5p
    Optional:  true
  kube-api-access-hl77l:
    Type:                    Projected (a volume that contains injected data from multiple sources)
    TokenExpirationSeconds:  3607
    ConfigMapName:           kube-root-ca.crt
    ConfigMapOptional:       <nil>
    DownwardAPI:             true
    ConfigMapName:           openshift-service-ca.crt
    ConfigMapOptional:       <nil>
QoS Class:                   Burstable
Node-Selectors:              kubernetes.io/os=linux
Tolerations:                 node.kubernetes.io/memory-pressure:NoSchedule op=Exists
                             node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
                             node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
  Type     Reason                  Age                    From     Message
  ----     ------                  ----                   ----     -------
  Warning  FailedCreatePodSandBox  2m25s (x409 over 15h)  kubelet  (combined from similar events): Failed to create pod sandbox: rpc error: code = Unknown desc = failed to create pod network sandbox k8s_alertmanager-main-0_openshift-monitoring_1c367a83-24e3-4249-861a-a107a6beaee2_0(dff5f302f774d060728261b3c86841ebdbd7ba11537ec9f4d90d57be17bdf44b): error adding pod openshift-monitoring_alertmanager-main-0 to CNI network "multus-cni-network": plugin type="multus" name="multus-cni-network" failed (add): [openshift-monitoring/alertmanager-main-0/1c367a83-24e3-4249-861a-a107a6beaee2:ovn-kubernetes]: error adding container to network "ovn-kubernetes": CNI request failed with status 400: '[openshift-monitoring/alertmanager-main-0 dff5f302f774d060728261b3c86841ebdbd7ba11537ec9f4d90d57be17bdf44b] [openshift-monitoring/alertmanager-main-0 dff5f302f774d060728261b3c86841ebdbd7ba11537ec9f4d90d57be17bdf44b] failed to get pod annotation: timed out waiting for annotations: context deadline exceeded                                                                                                                                                                                                                                                                             
 oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig describe po -n openshift-monitoring prometheus-k8s-0
Name:                 prometheus-k8s-0
Namespace:            openshift-monitoring
Priority:             2000000000
Priority Class Name:  system-cluster-critical
Node:                 sno01219/fc00:1001::8aa
Start Time:           Mon, 15 Aug 2022 23:53:39 +0000
Labels:               app.kubernetes.io/component=prometheus
                      app.kubernetes.io/instance=k8s
                      app.kubernetes.io/managed-by=prometheus-operator
                      app.kubernetes.io/name=prometheus
                      app.kubernetes.io/part-of=openshift-monitoring
                      app.kubernetes.io/version=2.36.2
                      controller-revision-hash=prometheus-k8s-546b544f8b
                      operator.prometheus.io/name=k8s
                      operator.prometheus.io/shard=0
                      prometheus=k8s
                      statefulset.kubernetes.io/pod-name=prometheus-k8s-0
Annotations:          kubectl.kubernetes.io/default-container: prometheus
                      openshift.io/scc: nonroot
Status:               Pending
IP:
IPs:                  <none>
Controlled By:        StatefulSet/prometheus-k8s
Init Containers:
  init-config-reloader:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:209e20410ec2d3d7a502f568d2b7fe1cd1beadcb36fff2d1e6f59d77be3200e3
    Image ID:
    Port:          8080/TCP
    Host Port:     0/TCP
    Command:
      /bin/prometheus-config-reloader
    Args:
      --watch-interval=0
      --listen-address=:8080
      --config-file=/etc/prometheus/config/prometheus.yaml.gz
      --config-envsubst-file=/etc/prometheus/config_out/prometheus.env.yaml
      --watched-dir=/etc/prometheus/rules/prometheus-k8s-rulefiles-0
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  10Mi
    Environment:
      POD_NAME:  prometheus-k8s-0 (v1:metadata.name)
      SHARD:     0
    Mounts:
      /etc/prometheus/config from config (rw)
      /etc/prometheus/config_out from config-out (rw)
      /etc/prometheus/rules/prometheus-k8s-rulefiles-0 from prometheus-k8s-rulefiles-0 (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
Containers:
  prometheus:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:c7df53b796e81ba8301ba74d02317226329bd5752fd31c1b44d028e4832f21c3
    Image ID:
    Port:          <none>
    Host Port:     <none>
    Args:
      --web.console.templates=/etc/prometheus/consoles
      --web.console.libraries=/etc/prometheus/console_libraries
      --storage.tsdb.retention.time=15d
      --config.file=/etc/prometheus/config_out/prometheus.env.yaml
      --storage.tsdb.path=/prometheus
      --web.enable-lifecycle
      --web.external-url=https:/console-openshift-console.apps.sno01219.rdu2.scalelab.redhat.com/monitoring
      --web.route-prefix=/
      --web.listen-address=127.0.0.1:9090
      --web.config.file=/etc/prometheus/web_config/web-config.yaml
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        70m
      memory:     1Gi
    Liveness:     exec [sh -c if [ -x "$(command -v curl)" ]; then exec curl --fail http://localhost:9090/-/healthy; elif [ -x "$(command -v wget)" ]; then exec wget -q -O /dev/null http://localhost:9090/-/healthy; else exit 1; fi] delay=0s timeout=3s period=5s #success=1 #failure=6
    Readiness:    exec [sh -c if [ -x "$(command -v curl)" ]; then exec curl --fail http://localhost:9090/-/ready; elif [ -x "$(command -v wget)" ]; then exec wget -q -O /dev/null http://localhost:9090/-/ready; else exit 1; fi] delay=0s timeout=3s period=5s #success=1 #failure=3
    Startup:      exec [sh -c if [ -x "$(command -v curl)" ]; then exec curl --fail http://localhost:9090/-/ready; elif [ -x "$(command -v wget)" ]; then exec wget -q -O /dev/null http://localhost:9090/-/ready; else exit 1; fi] delay=0s timeout=3s period=15s #success=1 #failure=60
    Environment:  <none>
    Mounts:
      /etc/pki/ca-trust/extracted/pem/ from prometheus-trusted-ca-bundle (ro)
      /etc/prometheus/certs from tls-assets (ro)
      /etc/prometheus/config_out from config-out (ro)
      /etc/prometheus/configmaps/kubelet-serving-ca-bundle from configmap-kubelet-serving-ca-bundle (ro)
      /etc/prometheus/configmaps/metrics-client-ca from configmap-metrics-client-ca (ro)
      /etc/prometheus/configmaps/serving-certs-ca-bundle from configmap-serving-certs-ca-bundle (ro)
      /etc/prometheus/rules/prometheus-k8s-rulefiles-0 from prometheus-k8s-rulefiles-0 (rw)
      /etc/prometheus/secrets/kube-etcd-client-certs from secret-kube-etcd-client-certs (ro)
      /etc/prometheus/secrets/kube-rbac-proxy from secret-kube-rbac-proxy (ro)
      /etc/prometheus/secrets/metrics-client-certs from secret-metrics-client-certs (ro)
      /etc/prometheus/secrets/prometheus-k8s-proxy from secret-prometheus-k8s-proxy (ro)
      /etc/prometheus/secrets/prometheus-k8s-thanos-sidecar-tls from secret-prometheus-k8s-thanos-sidecar-tls (ro)
      /etc/prometheus/secrets/prometheus-k8s-tls from secret-prometheus-k8s-tls (ro)
      /etc/prometheus/web_config/web-config.yaml from web-config (ro,path="web-config.yaml")
      /prometheus from prometheus-k8s-db (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
  config-reloader:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:209e20410ec2d3d7a502f568d2b7fe1cd1beadcb36fff2d1e6f59d77be3200e3
    Image ID:
    Port:          <none>
    Host Port:     <none>
    Command:
      /bin/prometheus-config-reloader
    Args:
      --listen-address=localhost:8080
      --reload-url=http://localhost:9090/-/reload
      --config-file=/etc/prometheus/config/prometheus.yaml.gz
      --config-envsubst-file=/etc/prometheus/config_out/prometheus.env.yaml
      --watched-dir=/etc/prometheus/rules/prometheus-k8s-rulefiles-0
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  10Mi
    Environment:
      POD_NAME:  prometheus-k8s-0 (v1:metadata.name)
      SHARD:     0
    Mounts:
      /etc/prometheus/config from config (rw)
      /etc/prometheus/config_out from config-out (rw)
      /etc/prometheus/rules/prometheus-k8s-rulefiles-0 from prometheus-k8s-rulefiles-0 (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
  thanos-sidecar:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:36fc214537c763b3a3f0a9dc7a1bd4378a80428c31b2629df8786a9b09155e6d
    Image ID:
    Ports:         10902/TCP, 10901/TCP
    Host Ports:    0/TCP, 0/TCP
    Args:
      sidecar
      --prometheus.url=http://localhost:9090/
      --tsdb.path=/prometheus
      --http-address=127.0.0.1:10902
      --grpc-server-tls-cert=/etc/tls/grpc/server.crt
      --grpc-server-tls-key=/etc/tls/grpc/server.key
      --grpc-server-tls-client-ca=/etc/tls/grpc/ca.crt
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        1m
      memory:     25Mi
    Environment:  <none>
    Mounts:
      /etc/tls/grpc from secret-grpc-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
  prometheus-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:140f8947593d92e1517e50a201e83bdef8eb965b552a21d3caf346a250d0cf6e
    Image ID:
    Port:          9091/TCP
    Host Port:     0/TCP
    Args:
      -provider=openshift
      -https-address=:9091
      -http-address=
      -email-domain=*
      -upstream=http://localhost:9090
      -openshift-service-account=prometheus-k8s
      -openshift-sar={"resource": "namespaces", "verb": "get"}
      -openshift-delegate-urls={"/": {"resource": "namespaces", "verb": "get"}}
      -tls-cert=/etc/tls/private/tls.crt
      -tls-key=/etc/tls/private/tls.key
      -client-secret-file=/var/run/secrets/kubernetes.io/serviceaccount/token
      -cookie-secret-file=/etc/proxy/secrets/session_secret
      -openshift-ca=/etc/pki/tls/cert.pem
      -openshift-ca=/var/run/secrets/kubernetes.io/serviceaccount/ca.crt
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  20Mi
    Environment:
      HTTP_PROXY:
      HTTPS_PROXY:
      NO_PROXY:
    Mounts:
      /etc/pki/ca-trust/extracted/pem/ from prometheus-trusted-ca-bundle (ro)
      /etc/proxy/secrets from secret-prometheus-k8s-proxy (rw)
      /etc/tls/private from secret-prometheus-k8s-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
  kube-rbac-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:b5e1c69d005727e3245604cfca7a63e4f9bc6e15128c7489e41d5e967305089e
    Image ID:
    Port:          9092/TCP
    Host Port:     0/TCP
    Args:
      --secure-listen-address=0.0.0.0:9092
      --upstream=http://127.0.0.1:9090
      --allow-paths=/metrics
      --config-file=/etc/kube-rbac-proxy/config.yaml
      --tls-cert-file=/etc/tls/private/tls.crt
      --tls-private-key-file=/etc/tls/private/tls.key
      --client-ca-file=/etc/tls/client/client-ca.crt
      --tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
      --logtostderr=true
      --tls-min-version=VersionTLS12
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        1m
      memory:     15Mi
    Environment:  <none>
    Mounts:
      /etc/kube-rbac-proxy from secret-kube-rbac-proxy (rw)
      /etc/tls/client from configmap-metrics-client-ca (ro)
      /etc/tls/private from secret-prometheus-k8s-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
  kube-rbac-proxy-thanos:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:b5e1c69d005727e3245604cfca7a63e4f9bc6e15128c7489e41d5e967305089e
    Image ID:
    Port:          10902/TCP
    Host Port:     0/TCP
    Args:
      --secure-listen-address=[$(POD_IP)]:10902
      --upstream=http://127.0.0.1:10902
      --tls-cert-file=/etc/tls/private/tls.crt
      --tls-private-key-file=/etc/tls/private/tls.key
      --client-ca-file=/etc/tls/client/client-ca.crt
      --config-file=/etc/kube-rbac-proxy/config.yaml
      --tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
      --allow-paths=/metrics
      --logtostderr=true
      --tls-min-version=VersionTLS12
      --client-ca-file=/etc/tls/client/client-ca.crt
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  10Mi
    Environment:
      POD_IP:   (v1:status.podIP)
    Mounts:
      /etc/kube-rbac-proxy from secret-kube-rbac-proxy (rw)
      /etc/tls/client from metrics-client-ca (ro)
      /etc/tls/private from secret-prometheus-k8s-thanos-sidecar-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
Conditions:
  Type              Status
  Initialized       False
  Ready             False
  ContainersReady   False
  PodScheduled      True
Volumes:
  config:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s
    Optional:    false
  tls-assets:
    Type:                Projected (a volume that contains injected data from multiple sources)
    SecretName:          prometheus-k8s-tls-assets-0
    SecretOptionalName:  <nil>
  config-out:
    Type:       EmptyDir (a temporary directory that shares a pod's lifetime)
    Medium:
    SizeLimit:  <unset>
  prometheus-k8s-rulefiles-0:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      prometheus-k8s-rulefiles-0
    Optional:  false
  web-config:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s-web-config
    Optional:    false
  secret-kube-etcd-client-certs:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  kube-etcd-client-certs
    Optional:    false
  secret-prometheus-k8s-tls:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s-tls
    Optional:    false
  secret-prometheus-k8s-proxy:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s-proxy
    Optional:    false
  secret-prometheus-k8s-thanos-sidecar-tls:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s-thanos-sidecar-tls
    Optional:    false
  secret-kube-rbac-proxy:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  kube-rbac-proxy
    Optional:    false
  secret-metrics-client-certs:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  metrics-client-certs
    Optional:    false
  configmap-serving-certs-ca-bundle:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      serving-certs-ca-bundle
    Optional:  false
  configmap-kubelet-serving-ca-bundle:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      kubelet-serving-ca-bundle
    Optional:  false
  configmap-metrics-client-ca:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      metrics-client-ca
    Optional:  false
  prometheus-k8s-db:
    Type:       EmptyDir (a temporary directory that shares a pod's lifetime)
    Medium:
    SizeLimit:  <unset>
  metrics-client-ca:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      metrics-client-ca
    Optional:  false
  secret-grpc-tls:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s-grpc-tls-crdkohb1gb92n
    Optional:    false
  prometheus-trusted-ca-bundle:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      prometheus-trusted-ca-bundle-2rsonso43rc5p
    Optional:  true
  kube-api-access-85zlc:
    Type:                    Projected (a volume that contains injected data from multiple sources)
    TokenExpirationSeconds:  3607
    ConfigMapName:           kube-root-ca.crt
    ConfigMapOptional:       <nil>
    DownwardAPI:             true
    ConfigMapName:           openshift-service-ca.crt
    ConfigMapOptional:       <nil>
QoS Class:                   Burstable
Node-Selectors:              kubernetes.io/os=linux
Tolerations:                 node.kubernetes.io/memory-pressure:NoSchedule op=Exists
                             node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
                             node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
  Type     Reason                  Age                    From     Message
  ----     ------                  ----                   ----     -------
  Warning  FailedCreatePodSandBox  4m19s (x409 over 15h)  kubelet  (combined from similar events): Failed to create pod sandbox: rpc error: code = Unknown desc = failed to create pod network sandbox k8s_prometheus-k8s-0_openshift-monitoring_debda4d2-6914-4b36-92e0-78f68d539ab3_0(86af91d4e64ab0fbad95352b029762e9856ff24005445b458bccb22e0ee9b655): error adding pod openshift-monitoring_prometheus-k8s-0 to CNI network "multus-cni-network": plugin type="multus" name="multus-cni-network" failed (add): [openshift-monitoring/prometheus-k8s-0/debda4d2-6914-4b36-92e0-78f68d539ab3:ovn-kubernetes]: error adding container to network "ovn-kubernetes": CNI request failed with status 400: '[openshift-monitoring/prometheus-k8s-0 86af91d4e64ab0fbad95352b029762e9856ff24005445b458bccb22e0ee9b655] [openshift-monitoring/prometheus-k8s-0 86af91d4e64ab0fbad95352b029762e9856ff24005445b458bccb22e0ee9b655] failed to get pod annotation: timed out waiting for annotations: context deadline exceeded

Both pods in error state seem to be waiting on this issue "failed to get pod annotation: timed out waiting for annotations: context deadline exceeded"

Description of problem:

Disconnected IPI OCP 4.11.5 cluster install on baremetal fails when hostname of master nodes does not include "master"    

Version-Release number of selected component (if applicable): 4.11.5

How reproducible:  Perform disconnected IPI install of OCP 4.11.5 on bare metal with master nodes that do not contain the text "master"

Steps to Reproduce:

Perform disconnected IPI install of OCP 4.11.5 on bare metal with master nodes that do not contain the text "master"

Actual results: master nodes do come up.

Expected results: master nodes should come up despite that the text "master" is not in their hostname.

Additional info:

Disconnected IPI OCP 4.11.5 cluster install on baremetal fails when hostname of master nodes does not include "master"    

My cust reinstall new cluster using the fix here . But they have the exact same issue. The metal3 pod have  PROVISIONING_MACS value  empty.  Can we work together with them to understand why the new code fix https://github.com/openshift/cluster-baremetal-operator/commit/76bd6bc461b30a6a450f85a42e492a0933178aee is not working.

cat metal3-static-ip-set/metal3-static-ip-set/logs/current.log
2022-09-27T14:19:38.140662564Z + '[' -z 10.17.199.3/27 ']'
2022-09-27T14:19:38.140662564Z + '[' -z '' ']'
2022-09-27T14:19:38.140662564Z + '[' -n '' ']'
2022-09-27T14:19:38.140722345Z ERROR: Could not find suitable interface for "10.17.199.3/27"
2022-09-27T14:19:38.140726312Z + '[' -n '' ']'
2022-09-27T14:19:38.140726312Z + echo 'ERROR: Could not find suitable interface for "10.17.199.3/27"'
2022-09-27T14:19:38.140726312Z + exit 1

 

cat metal3-b9bf8d595-gv94k.yaml
...
initContainers:

command: /set-static-ip
env: name: PROVISIONING_IP
value: 10.17.199.3/27 name: PROVISIONING_INTERFACE name: PROVISIONING_MACS <------------------------- missing MACS
image: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:4f04793bd109ecba2dfe43be93dc990ac5299272482c150bd5f2eee0f80c983b
imagePullPolicy: IfNotPresent
name: metal3-static-ip-set
.... 
  • omc logs machine-api-controllers-6b9ffd96cd-grh6l -c nodelink-controller  -n openshift-machine-api
    2022-09-21T16:13:43.600517485Z I0921 16:13:43.600513       1 nodelink_controller.go:408] Finding machine from node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca"
    2022-09-21T16:13:43.600521381Z I0921 16:13:43.600517       1 nodelink_controller.go:425] Finding machine from node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca" by ProviderID
    2022-09-21T16:13:43.600525225Z W0921 16:13:43.600521       1 nodelink_controller.go:427] Node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca" has no providerID
    2022-09-21T16:13:43.600528917Z I0921 16:13:43.600524       1 nodelink_controller.go:448] Finding machine from node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca" by IP
    2022-09-21T16:13:43.600532711Z I0921 16:13:43.600529       1 nodelink_controller.go:453] Found internal IP for node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca": "10.17.192.33"
    2022-09-21T16:13:43.600551289Z I0921 16:13:43.600544       1 nodelink_controller.go:477] Matching machine not found for node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca" with internal IP "10.17.192.33"

From @dtantsur WIP PR: https://github.com/openshift/cluster-baremetal-operator/pull/299

Customer is waiting for this fix. The previous code change don't fix customer situation.

Please refer to this slack thread :https://coreos.slack.com/archives/CFP6ST0A3/p1664215102459219

DVO metrics have some sensitive data that isn't desired to be sent outside the cluster. For that, IO must remove this data from the metrics before saving it to the archive and uploading it to the pipeline.

Remove the name and namespace from DVO metrics before saving it to the IO archive.

This is a clone of issue OCPBUGS-4900. The following is the description of the original issue:

The test:

test=[sig-storage] Volume limits should verify that all nodes have volume limits [Skipped:NoOptionalCapabilities] [Suite:openshift/conformance/parallel] [Suite:k8s]

Is hard failing on aws and gcp techpreview clusters:

https://sippy.dptools.openshift.org/sippy-ng/tests/4.12/analysis?test=%5Bsig-storage%5D%20Volume%20limits%20should%20verify%20that%20all%20nodes%20have%20volume%20limits%20%5BSkipped%3ANoOptionalCapabilities%5D%20%5BSuite%3Aopenshift%2Fconformance%2Fparallel%5D%20%5BSuite%3Ak8s%5D

The failure message is consistently:

fail [github.com/onsi/ginkgo/v2@v2.1.5-0.20220909190140-b488ab12695a/internal/suite.go:612]: Dec 15 09:07:51.278: Expected volume limits to be set
Ginkgo exit error 1: exit with code 1

Sample failure:

https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-multiarch-master-nightly-4.12-ocp-e2e-aws-ovn-arm64-techpreview/1603313676431921152

A fix for this will bring several jobs back to life, but they do span 4.12 and 4.13.

job=periodic-ci-openshift-release-master-ci-4.12-e2e-gcp-sdn-techpreview=all
job=periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview=all
job=periodic-ci-openshift-release-master-ci-4.13-e2e-aws-sdn-techpreview=all
job=periodic-ci-openshift-release-master-ci-4.13-e2e-gcp-sdn-techpreview=all
job=periodic-ci-openshift-multiarch-master-nightly-4.13-ocp-e2e-aws-ovn-arm64-techpreview=all
job=periodic-ci-openshift-multiarch-master-nightly-4.12-ocp-e2e-aws-ovn-arm64-techpreview=all

Description of problem:

Currently openshift-installer and ARO installer have diverged in code bases. In effort from the ARO team to be able to reduce/remove this, the we are patching openshift-installer.

ARO uses a newer version of the Azure SDK. We need to backport this change to previous versions of openshift-installer

Version-Release number of selected component (if applicable):

See affected versions

How reproducible:

N/A

Steps to Reproduce:

N/A

Actual results:

N/A

Expected results:

N/A

Additional info:

 

Description of problem:

We need to include the `openshift_apps_deploymentconfigs_strategy_total` metrics to the IO archive file.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Create a cluster
2. Download the IO archive
3. Check the file `config/metrics`
4. You must find `openshift_apps_deploymentconfigs_strategy_total` insde of it

Actual results:

 

Expected results:

You should see the `openshift_apps_deploymentconfigs_strategy_total` at the `config/metrics` file.

Additional info:

 

Description of problem:

Get the below error when upgrading to OCP 4.12 from 4.9->4.10->4.11.

MacBook-Pro:~ jianzhang$ oc get clusterversion
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.0-0.nightly-2022-08-24-091058   True        True          4h      Unable to apply 4.12.0-0.nightly-2022-08-24-053339: the workload openshift-operator-lifecycle-manager/package-server-manager cannot roll out
   - lastTransitionTime: "2022-08-25T04:47:36Z"
    lastUpdateTime: "2022-08-25T04:47:36Z"
    message: 'pods "package-server-manager-85b6dc4d89-sdzcc" is forbidden: violates
      PodSecurity "restricted:v1.24": seccompProfile (pod or container "package-server-manager"
      must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")'
    reason: FailedCreate
    status: "True"
    type: ReplicaFailure

 

Version-Release number of selected component (if applicable):

MacBook-Pro:~ jianzhang$ oc exec catalog-operator-c5c655d5c-b9lcn -- olm --version
OLM version: 0.19.0
git commit: 8a984d41acc67c0bc9bfe807fadeef23f83abd44 

How reproducible:

always

Steps to Reproduce:
1. Install OCP 4.11.0-0.nightly-2022-08-24-091058
2. Upgrade it to 4.12.0-0.nightly-2022-08-24-053339

Actual results:

The cluster upgrading is blocked. Get the above errors as described.

Expected results:

 Upgraded to 4.12 from old OCP versions 4.5, 4.9 successfully.

Additional info:

MacBook-Pro:~ jianzhang$ oc get deployment package-server-manager -o yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  annotations:
    deployment.kubernetes.io/revision: "5"
    include.release.openshift.io/ibm-cloud-managed: "true"
    include.release.openshift.io/self-managed-high-availability: "true"
    include.release.openshift.io/single-node-developer: "true"
  creationTimestamp: "2022-08-25T00:14:08Z"
  generation: 5
  labels:
    app: package-server-manager
  name: package-server-manager
  namespace: openshift-operator-lifecycle-manager
  ownerReferences:
  - apiVersion: config.openshift.io/v1
    kind: ClusterVersion
    name: version
    uid: 3fd29082-0e76-4b09-988e-78cb5fc7c8b5
  resourceVersion: "169028"
  uid: c8f7cbe2-4f82-40ce-9468-817ffefa903f
spec:
  progressDeadlineSeconds: 600
  replicas: 1
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      app: package-server-manager
  strategy:
    rollingUpdate:
      maxSurge: 25%
      maxUnavailable: 25%
    type: RollingUpdate
  template:
    metadata:
      annotations:
        target.workload.openshift.io/management: '{"effect": "PreferredDuringScheduling"}'
      creationTimestamp: null
      labels:
        app: package-server-manager
    spec:
      containers:
      - args:
        - --name
        - $(PACKAGESERVER_NAME)
        - --namespace
        - $(PACKAGESERVER_NAMESPACE)
        command:
        - /bin/psm
        - start
        env:
        - name: PACKAGESERVER_NAME
          value: packageserver
        - name: PACKAGESERVER_IMAGE
          value: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:d49e1e27114f4b719bc8f3c222b2c5934d3b8028c79ec8e2bd288f6e9b5b3d5c
        - name: PACKAGESERVER_NAMESPACE
          valueFrom:
            fieldRef:
              apiVersion: v1
              fieldPath: metadata.namespace
        - name: RELEASE_VERSION
          value: 4.12.0-0.nightly-2022-08-24-053339
        image: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:d49e1e27114f4b719bc8f3c222b2c5934d3b8028c79ec8e2bd288f6e9b5b3d5c
        imagePullPolicy: IfNotPresent
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /healthz
            port: 8080
            scheme: HTTP
          initialDelaySeconds: 30
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 1
        name: package-server-manager
        readinessProbe:
          failureThreshold: 3
          httpGet:
            path: /healthz
            port: 8080
            scheme: HTTP
          initialDelaySeconds: 30
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 1
        resources:
          requests:
            cpu: 10m
            memory: 50Mi
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop:
            - ALL
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: FallbackToLogsOnError
      dnsPolicy: ClusterFirst
      nodeSelector:
        kubernetes.io/os: linux
        node-role.kubernetes.io/master: ""
      priorityClassName: system-cluster-critical
      restartPolicy: Always
      schedulerName: default-scheduler
      securityContext:
        runAsNonRoot: true
      serviceAccount: olm-operator-serviceaccount
      serviceAccountName: olm-operator-serviceaccount
      terminationGracePeriodSeconds: 30
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/master
        operator: Exists
      - effect: NoExecute
        key: node.kubernetes.io/unreachable
        operator: Exists
        tolerationSeconds: 120
      - effect: NoExecute
        key: node.kubernetes.io/not-ready
        operator: Exists
        tolerationSeconds: 120
status:
  availableReplicas: 1
  conditions:
  - lastTransitionTime: "2022-08-25T03:14:20Z"
    lastUpdateTime: "2022-08-25T03:14:20Z"
    message: Deployment has minimum availability.
    reason: MinimumReplicasAvailable
    status: "True"
    type: Available
  - lastTransitionTime: "2022-08-25T04:47:36Z"
    lastUpdateTime: "2022-08-25T04:47:36Z"
    message: 'pods "package-server-manager-85b6dc4d89-sdzcc" is forbidden: violates
      PodSecurity "restricted:v1.24": seccompProfile (pod or container "package-server-manager"
      must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")'
    reason: FailedCreate
    status: "True"
    type: ReplicaFailure
  - lastTransitionTime: "2022-08-25T04:57:37Z"
    lastUpdateTime: "2022-08-25T04:57:37Z"
    message: ReplicaSet "package-server-manager-85b6dc4d89" has timed out progressing.
    reason: ProgressDeadlineExceeded
    status: "False"
    type: Progressing
  observedGeneration: 5
  readyReplicas: 1
  replicas: 1
  unavailableReplicas: 1