Back to index

4.11.0-rc.1

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.10.67

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

Summary (PM+lead)

Configure audit logging to capture login, logout and login failure details

Motivation (PM+lead)

TODO(PM): update this

Customer who needs login, logout and login failure details inside the openshift container platform.
I have checked for this on my test cluster but the audit logs do not contain any user name specifying login or logout details. For successful logins or logout, on CLI and openshift console as well we can see 'Login successful' or 'Invalid credentials'.

Expected results: Login, logout and login failures should be captured in audit logging.

Goals (lead)

  1. Login, logout and login failures should be captured in audit logs

Non-Goals (lead)

  1. Don't attempt to log login failures in the IdP login flow that goes beyond timeout, if it the information is not available in explicit oauth-server requests (e.g. github password login error).
  2. Logout does not involve oauth-server (but is a simple API object deletion in oauth-apiserver). Hence, the audit log discussed here won't include logout.

Deliverables

  1. Changes to oauth-server to log into /varLog/oauth-server/audit.log on the master node.
  2. Documentation

Proposal (lead)

The apiserver pods today have ´/var/log/<kube|oauth|openshift>-apiserver` mounted from the host and create audit files there using the upstream audit event format (JSON lines following https://github.com/kubernetes/apiserver/blob/92392ef22153d75b3645b0ae339f89c12767fb52/pkg/apis/audit/v1/types.go#L72). These events are apiserver specific, but as oauth authentication flow events are also requests, we can use the apiserver event format to log logins, login failures and logouts. Hence, we propose to make oauth-server to create /var/log/oauth-server/audit.log files on the master nodes using that format.

When the login flow does not finish within a certain time (e.g. 10min), we can artificially create an event to show a login failure in the audit logs.

User Stories (PM)

Dependencies (internal and external, lead)

Previous Work (lead)

Open questions (lead)

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

🏆 What

Let the Cluster Authentication Operator deliver the policy to OAuthServer.

💖 Why

In order to know if authn events should be logged, OAuthServer needs to be aware of it.

🗒 Notes

Create an observer to deliver the audit policy to the oauth server

Make the authentication-operator react to the new audit field in the oauth.config/cluster object. Write an observer watching this field, such an observer will translate the top-level configuration into oauth-server config and add it to the rest of the observed config.

* Stanislav Láznička

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

Problem:

Certain Insights Advisor features differentiate between RHEL and OCP advisor

Goal:

Address top priority UI misalignments between RHEL and OCP advisor. Address UI features dropped from Insights ADvisor for OCP GA.

 

Scope:

Specific tasks and priority of them tracked in https://issues.redhat.com/browse/CCXDEV-7432

 
 
 
 

 

This contains all the Insights Advisor widget deliverables for the OCP release 4.11.

Scope
It covers only minor bug fixes and improvements:

  • better error handling during internal outages in data processing
  • add "last refresh" timestamp in the Advisor widget

Show the error message (mocked in CCXDEV-5868) if the Prometheus metrics `cluster_operator_conditions{name="insights"}` contain two true conditions: UploadDegraded and Degraded at the same time. This state occurs if there was an IO archive upload error = problems with the pipeline.

Expected for 4.11 OCP release.

Scenario: Check if the Insights Advisor widget in the OCP WebConsole UI shows the time of the last data analysis
Given: OCP WebConsole UI and the cluster dashboard is accessible
And: CCX external data pipeline is in a working state
And: administrator A1 has access to his cluster's dashboard
And: Insights Operator for this cluster is sending archives
When: administrator A1 clicks on the Insights Advisor widget
Then: the results of the last analysis are showed in the Insights Advisor widget
And: the time of the last analysis is shown in the Insights Advisor widget 

Acceptance criteria:

  1. The time of the last analysis is shown in the Insights Advisor widget for the scenario above
  2. The way it is presented is defined within the scope of https://issues.redhat.com/browse/CCXDEV-5869 (mockup task)
  3. The source of this timestamp must be a result of running the Prometheus metric (last archive upload time):
    max_over_time(timestamp(changes(insightsclient_request_send_total\{status_code="202"}[1m]) > 0)[24h:1m])
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Epic Goal

  • Allow admin user to create new alerting rules, targeting metrics in any namespace
  • Allow cloning of existing rules to simplify rule creation
  • Allow creation of silences for existing alert rules

Why is this important?

  • Currently, any platform-related metrics (exposed in a openshift-, kube- and default namespace) cannot be used to form a new alerting rule. That makes it very difficult for administrators to enrich our out of the box experience for the OpenShift Container Platform with new rules that may be specific to their environments.
  • Additionally, we had requests from customer to allow modifications of our existing, out of the box alerting rules (for instance tweaking the alert expression or changing the severity label). Unfortunately, that is not easy since most rules come from several open source projects, or other OpenShift components, and any modifications would make a seamless upgrade not really seamless anymore. Imagine K8s changes metrics again (see 1.14) and we have to update our rules. We would not know what modifications have been done (even just the threshold might be difficult if upstream changes that as well) and we would not be able to upgrade these rules.

Scenarios

  • I'd like to modify the query expression of an existing rule (because the threshold value doesn't match with my environment).

Cloning the existing rule should end up with a new rule in the same namespace.
Modifications can now be done to the new rule.
(Optional) You can silence the existing rule.

  • I'd like to create a new rule based on a metric only available to an openshift-* namespace

Create a new PrometheusRule object inside the namespace that includes the metrics you need to form the alerting rule.

  • I'd like to update the label of an existing rule.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Ability to distinguish between rules deployed by us (CMO) and user created rules

Dependencies (internal and external)

Previous Work (Optional):

Open questions::

  1. Distinguish between operator-created rules and user-created rules
    Currently no such mechanism exists. This will need to be added to prometheus-operator or cluster-monitoring-operator.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

CMO should reconcile the platform Prometheus configuration with the AlertingRule resources.

 

DoD

  • Alerts added via AlertingRule resources are evaluated by the Platform monitoring stack.

CMO should reconcile the platform Prometheus configuration with the alert-relabel-config resources.

 

DoD

  • Alerts changed via alert-relabel-configs are evaluated by the Platform monitoring stack.
  • Product alerts which are overriden aren't sent to Alertmanager

Managing PVs at scale for a fleet creates difficulties where "one size does not fit all". The ability for SRE to deploy prometheus with PVs and have retention based an on a desired size would enable easier management of these volumes across the fleet. 

 

The prometheus-operator exposes retentionSize.

Field Description
retentionSize Maximum amount of disk space used by blocks. Supported units: B, KB, MB, GB, TB, PB, EB. Ex: 512MB.

This is a feature request to enable this configuration option via CMO cluster-monitoring-config ConfigMap.

 

cc Simon Pasquier  

Epic Goal

  • Cluster admins want to configure the retention size for their metrics.

Why is this important?

  • While it is possible to define how long metrics should be retained on disk, it's not possible to tell the cluster monitoring operator how much data it should keep. For OSD/ROSA in particular, it would facilitate the management of the fleet if the retention size could be configured based on the persistent volume size because it would avoid issues with the storage getting full and monitoring being down when too many metrics are produced.

Scenarios

  • As a cluster admin, I want to define the maximum amount of data to be retained on the persistent volume.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • The cluster-monitoring-config config and the user-workload-monitoring-config configmap allow to configure the retention size for
    • Prometheus (Platform and UWM)
    • Thanos Ruler (to be confirmed)
  • Proper validation is in place preventing bad user inputs from breaking the stack.

Dependencies (internal and external)

  1. Thanos ruler doesn't support retention size (only retention time).

Previous Work (Optional):

  1. None

Open questions::

  1. None

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Problem Alignment

The Problem

Today, all configuration for setting individual, for example, routing configuration is done via a single configuration file that only admins have access to. If an environment uses multiple tenants and each tenant, for example, has different systems that they are using to notify teams in case of an issue, then someone needs to file a request w/ an admin to add the required settings.

That can be bothersome for individual teams, since requests like that usually disappear in the backlog of an administrator. At the same time, administrators might get tons of requests that they have to look at and prioritize, which takes them away from more crucial work.

We would like to introduce a more self service approach whereas individual teams can create their own configuration for their needs w/o the administrators involvement.

Last but not least, since Monitoring is deployed as a Core service of OpenShift there are multiple restrictions that the SRE team has to apply to all OSD and ROSA clusters. One restriction is the ability for customers to use the central Alertmanager that is owned and managed by the SRE team. They can't give access to the central managed secret due to security concerns so that users can add their own routing information.

High-Level Approach

Provide a new API (based on the Operator CRD approach) as part of the Prometheus Operator that allows creating a subset of the Alertmanager configuration without touching the central Alertmanager configuration file.

Please note that we do not plan to support additional individual webhooks with this work. Customers will need to deploy their own version of the third party webhooks.

Goal & Success

  • Allow users to deploy individual configurations that allow setting up Alertmanager for their needs without an administrator.

Solution Alignment

Key Capabilities

  • As an OpenShift administrator, I want to control who can CRUD individual configuration so that I can make sure that any unknown third person can touch the central Alertmanager instance shipped within OpenShift Monitoring.
  • As a team owner, I want to deploy a routing configuration to push notifications for alerts to my system of choice.

Key Flows

Team A wants to send all their important notifications to a specific Slack channel.

  • Administrator gives permission to Team A to allow creating a new configuration CR in their individual namespace.
  • Team A creates a new configuration CR.
  • Team A configures what alerts should go into their Slack channel.
  • Open Questions & Key Decisions (optional)
  • Do we want to improve anything inside the developer console to allow configuration?

Epic Goal

  • Allow users to manage Alertmanager for user-defined alerts and have the feature being fully supported.

Why is this important?

  • Users want to configure alert notifications without admin intervention.
  • The feature is currently Tech Preview, it should be generally available to benefit a bigger audience.

Scenarios

  1. As a cluster admin, I can deploy an Alertmanager service dedicated for user-defined alerts (e.g. separated from the existing  Alertmanager already used for platform alerts).
  2. As an application developer, I can silence alerts from the OCP console.
  3. As an application developer, I'm not allowed to configure invalid AlertmanagerConfig objects.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • The AlertmanagerConfig CRD is v1beta1
  • The validating webhook service checking AlertmanagerConfig resources is highly-available.

Dependencies (internal and external)

  1. Prometheus operator upstream should migrate the AlertmanagerConfig CRD from v1alpha1 to v1beta1
  2. Console enhancements likely to be involved (see below).

Previous Work (Optional):

  1. Part of the feature is available as Tech Preview (MON-880).

Open questions:

  1. Coordination with the console team to support the Alertmanager service dedicated for user-defined alerts.
  2. Migration steps for users that are already using the v1alpha1 CRD.

Done Checklist

 * CI - CI is running, tests are automated and merged.
 * Release Enablement <link to Feature Enablement Presentation>
 * DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
 * DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
 * DEV - Downstream build attached to advisory: <link to errata>
 * QE - Test plans in Polarion: <link or reference to Polarion>
 * QE - Automated tests merged: <link or reference to automated tests>
 * DOC - Downstream documentation merged: <link to meaningful PR> 

 

Now that upstream supports AlertmanagerConfig v1beta1 (see MON-2290 and https://github.com/prometheus-operator/prometheus-operator/pull/4709), it should be deployed by CMO.

DoD:

  • Kubernetes API exposes and supports the v1beta1 version for AlertmanagerConfig CRD (in addition to v1alpha1).
  • Users can manage AlertmanagerConfig v1beta1 objects seamlessly.
  • AlertmanagerConfig v1beta1 objects are reconciled in the generated Alertmanager configuration.
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Epic Goal

  • The goal is to support metrics federation for user-defined monitoring via the /federate Prometheus endpoint (both from within and outside of the cluster).

Why is this important?

  • It is already possible to configure remote write for user-defined monitoring to push metrics outside of the cluster but in some cases, the network flow can only go from the outside to the cluster and not the opposite. This makes it impossible to leverage remote write.
  • It is already possible to use the /federate endpoint for the platform Prometheus (via the internal service or via the OpenShift route) so not supporting for UWM doesn't provide a consistent experience.
  • If we don't expose the /federate endpoint for the UWM Prometheus, users would have no supported way to store and query application metrics from a central location.

Scenarios

  1. As a cluster admin, I want to federate user-defined metrics using the Prometheus /federate endpoint.
  2. As a cluster admin, I want that the /federate endpoint to UWM is accessible via an OpenShift route.
  3. As a cluster admin, I want that the access to the /federate endpoint to UWM requires authentication (with bearer token only) & authorization (the required permissions should match the permissions on the /federate endpoint of the Platform Prometheus).

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Documentation - information about the recommendations and limitations/caveats of the federation approach.
  • User can federate user-defined metrics from within the cluster
  • User can federate user-defined metrics from the outside via the OpenShift route.

Dependencies (internal and external)

  1. None

Previous Work (Optional):

  1. None

Open questions:

  1. None

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

DoD

  • User can federate UWM metrics from outside of the cluster via the OpenShift route.
  • E2E test added to the CMO test suite.

DoD

  • User can federate UWM metrics within the cluster from the prometheus-user-workload.openshift-user-workload-monitoring.svc:9092 service
  • The service requires authentication via bearer token and authorization (same permissions as for federating platform metrics)

Copy/paste from [_https://github.com/openshift-cs/managed-openshift/issues/60_]

Which service is this feature request for?
OpenShift Dedicated and Red Hat OpenShift Service on AWS

What are you trying to do?
Allow ROSA/OSD to integrate with AWS Managed Prometheus.

Describe the solution you'd like
Remote-write of metrics is supported in OpenShift but it does not work with AWS Managed Prometheus since AWS Managed Prometheus requires AWS SigV4 auth.

  • Note that Prometheus supports AWS SigV4 since v2.26 and OpenShift 4.9 uses v2.29.

Describe alternatives you've considered
There is the workaround to use the "AWS SigV4 Proxy" but I'd think this is not properly supported by RH.
https://mobb.ninja/docs/rosa/cluster-metrics-to-aws-prometheus/

Additional context
The customer wants to use an open and portable solution to centralize metrics storage and analysis. If they also deploy to other clouds, they don't want to have to re-configure. Since most clouds offer a Prometheus service (or it's easy to self-manage Prometheus), app migration should be simplified.

Epic Goal

The cluster monitoring operator should allow OpenShift customers to configure remote write with all authentication methods supported by upstream Prometheus.

We will extend CMO's configuration API to support the following authentications with remote write:

  • Sigv4
  • Authorization
  • OAuth2

Why is this important?

Customers want to send metrics to AWS Managed Prometheus that require sigv4 authentication (see https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-secure-metric-ingestion.html#AMP-secure-auth).

Scenarios

  1. As a cluster admin, I want to forward platform/user metrics to remote write systems requiring Sigv4 authentication.
  2. As a cluster admin, I want to forward platform/user metrics to remote write systems requiring OAuth2 authentication.
  3. As a cluster admin, I want to forward platform/user metrics to remote write systems requiring custom Authorization header for authentication (e.g. API key).

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • It is possible for a cluster admin to configure any authentication method that is supported by Prometheus upstream for remote write (both platform and user-defined metrics):
    • Sigv4
    • Authorization
    • OAuth2

Dependencies (internal and external)

  • In theory none because everything is already supported by the Prometheus operator upstream. We may discover bugs in the upstream implementation though that may require upstream involvement.

Previous Work

  • After CMO started exposing the RemoteWrite specification in MON-1069, additional authentication options where added to prometheus and prometheus-operator but CMO didn't catch up on these.

Open Questions

  • None

Prometheus and Prometheus operator already support custom Authorization for remote write. This should be possible to configure the same in the CMO configuration:

 

apiVersion: v1
kind: ConfigMap
metadata:
  name: cluster-monitoring-config
  namespace: openshift-monitoring
data:
  config.yaml: |
    prometheusK8s:
      remoteWrite:
      - url: "https://remote-write.endpoint"
        Authorization:
          type: Bearer
          credentials:
            name: credentials
            key: token

DoD:

  • Ability to configure custom Authorization for remote write in the openshift-monitoring/cluster-monitoring-config configmap
  • Ability to configure custom Authorization for remote write in the openshift-user-workload-monitoring/user-workload-monitoring-config configmap

Prometheus and Prometheus operator already support sigv4 authentication for remote write. This should be possible to configure the same in the CMO configuration:

 

apiVersion: v1
kind: ConfigMap
metadata:
  name: cluster-monitoring-config
  namespace: openshift-monitoring
data:
  config.yaml: |
    prometheusK8s:
      remoteWrite:
      - url: "https://remote-write.endpoint"
        sigv4:
          accessKey:
            name: aws-credentialss
            key: access
          secretKey:
            name: aws-credentials
            key: secret

          profile: "SomeProfile"

          roleArn: "SomeRoleArn"

DoD:

  • Ability to configure sigv4 authentication for remote write in the openshift-monitoring/cluster-monitoring-config configmap
  • Ability to configure sigv4 authentication for remote write in the openshift-user-workload-monitoring/user-workload-monitoring-config configmap
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As WMCO user, I want to make sure containerd logging information has been updated in documents and scripts.

Acceptance Criteria

  • update must-gather to collect containerd logs
  • Internal/Customer Documents and log collecting scripts must have containerd specific information (ex: location of logs). 

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Create a PR in openshift/cluster-ingress-operator to implement configurable router probe timeouts.

The PR should include the following:

  • Changes to the ingress operator's ingress controller to allow the user to configure the readiness and liveness probe's timeoutSeconds values.
  • Changes to existing unit tests to verify that the new functionality works properly.
  • Write E2E test to verify that the new functionality works properly.
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

User Story: As a customer in a highly regulated environment, I need the ability to secure DNS traffic when forwarding requests to upstream resolvers so that I can ensure additional DNS traffic and data privacy.

OCP/Telco Definition of Done
Feature Template descriptions and documentation.

Feature Overview.

Early customer feedback is that they see SNO as a great solution covering smaller footprint deployment, but are wondering what is the evolution story OpenShift is going to provide where more capacity or high availability are needed in the future.

While migration tooling (moving workload/config to new cluster) could be a mid-term solution, customer desire is not to include extra hardware to be involved in this process.

 For Telecommunications Providers, at the Far Edge they intend to start small and then grow. Many of these operators will start with a SNO-based DU deployment as an initial investment, but as DUs evolve, different segments of the radio spectrum are added, various radio hardware is provisioned and features delivered to the Far Edge, the Telecommunication Providers desire the ability for their Far Edge deployments to scale up from 1 node to 2 nodes to n nodes. On the opposite side of the spectrum from SNO is MMIMO where there is a robust cluster and workloads use HPA.

Goals

  • Provide the capability to expand a single replica control plane topology to host more workloads capacity - add worker
  • Provide the capability to expand a single replica control plane to be a highly available control plane
  • To satisfy MMIMO Telecommunications providers will want the ability to scale a SNO to a multi-node cluster that can support HPA.
  • Telecommunications providers do not want workload (DU specifically) downtime when migrating from SNO to a multi-node cluster.
  • Telecommunications providers wish to be able to scale from one to two or more nodes to support a variety of radio hardware.
  • Support CP scaling (CP HA) for 2 node cluster, 3 node cluster and n node cluster. As the number of nodes in the cluster increases so does the failure domain of the cluster. The cluster is now supporting more cell sectors and therefore has more of a need for HA and resiliency including the cluster CP.

Requirements

  • TBD
Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

This Section:

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

Questions to answer…

  • ...

Out of Scope

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Epic Goal

  • Documented and supported flow for adding 1, 2, 3 or more workers to a Single Node OpenShift (SNO) deployment without requiring cluster downtime and the understanding that this action will not make the cluster itself highly available.

Why is this important?

  • Telecommunications and Edge scenarios where HA is handled via failover to another site but single site capacity may vary or need to be expanded over time.
  • Similar scenarios exist for some ISV vendors where OpenShift is an implementation detail of how they deliver their solution on top of another platform (e.g. VMware).

Scenarios

  1. Adding a worker to a single node openshift cluster.
  2. Adding a second worker to a single node openshift cluster.
  3. Adding a third worker to a single node openshift cluster.
  4. Removing a worker node from a single node openshift cluster that has had 1 or more workers added.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Customer facing documentation of the add worker flow for SNO.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

  1. Presumably there is a scale limit on how many workers could be added to an SNO control plane, and it is lower than the limit for a "normal" 3 node control plane. It is not anticipated that this limit will be established in this epic. Intent is to focus on small scale sites where adding 1-3 worker nodes would be beneficial.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

In OCP 4.8 the router was changed to use the "random" balancing algorithm for non-passthrough routes by default. It was previously "leastconn".

Bug https://bugzilla.redhat.com/show_bug.cgi?id=2007581 shows that using "random" by default incurs significant memory overhead for each backend that uses it.

PR https://github.com/openshift/cluster-ingress-operator/pull/663
reverted the change and made "leastconn" the default again (OCP 4.8 onwards).

The analysis in https://bugzilla.redhat.com/show_bug.cgi?id=2007581#c40 shows that the default haproxy behaviour is to multiply the weight (specified in the route CR) by 16 as it builds its data structures for each backend. If no weight is specified then openshift-router sets the weight to 256. If you have many, many thousands of routes then this balloons quickly and leads to a significant increase in memory usage, as highlighted by customer cases attached to BZ#2007581.

The purpose of this issue is to both explore changing the openshift-router default weight (i.e., 256) to something smaller, or indeed unset (assuming no explicit weight has been requested), and to measure the memory usage within the context of the existing perf&scale tests that we use for vetting new haproxy releases.

It may be that the low-hanging change is to not default to weight=256 for backends that only have one pod replica (i.e., if no value specified, and there is only 1 pod replica, then don't default to 256 for that single server entry).

Outcome: does changing the [default] weight value make it feasible to switch back to "random" as the default balancing algorithm for a future OCP release.

Revert router to using "random" once again in 4.11 once analysis is done on impact of weight and static memory allocation.

Per the 4.6.30 Monitoring DNS Post Mortem, we should add E2E tests to openshift/cluster-dns-operator to reduce the risk that changes to our CoreDNS configuration break DNS resolution for clients.  

To begin with, we add E2E DNS testing for 2 or 3 client libraries to establish a framework for testing DNS resolvers; the work of adding additional client libraries to this framework can be left for follow-up stories.  Two common libraries are Go's resolver and glibc's resolver.  A somewhat common library that is known to have quirks is musl libc's resolver, which uses a shorter timeout value than glibc's resolver and reportedly has issues with the EDNS0 protocol extension.  It would also make sense to test Java or other popular languages or runtimes that have their own resolvers. 

Additionally, as talked about in our DNS Issue Retro & Testing Coverage meeting on Feb 28th 2024, we also decided to add a test for testing a non-EDNS0 query for a larger than 512 byte record, as once was an issue in bug OCPBUGS-27397.   

The ultimate goal is that the test will inform us when a change to OpenShift's DNS or networking has an effect that may impact end-user applications. 

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Goal
Add support for PDB (Pod Disruption Budget) to the console.

Requirements:

  • Add a list, detail, and yaml view (with samples) for PDBs. In addition, update the workloads page to support PDBs as well.
  • For the PBD list page include a table with name, namespace, selector, availability, allowed disruptions and created. In addition, to the table provide the main call to action to create a PDB.
  • For the PDB details page provide a Details, YAML and Pods tab. The Pods tab will include a list pods associated with the PBD - make sure to surface the owner column.
  • When users create a PDB from the list page, take them to the YAML and provide samples to enhance the creation experience. Sample 1: Set max unavailable to 0, Sample 2: Set min unavailable to 25% (confirming samples with stakeholders). In the case that a PDB has already been applied, warn users that it is not recommended to add another. Cover use cases as well that keep users from creating poor policies - for example, setting the minimum available to zero.
  • Add the ability to add/edit/view PBDs on a workload. If we edit a PDB applied to multiple workloads, warn users that this change will affect all workloads and not only the one they are currently editing. When a PDB has been applied, add a new filed to the details page with a link to the PDB and policy.

Designs:

Samuel Padgett Colleen Hart

When viewing the Installed Operators list set to 'All projects' and then selecting an operator that is available in 'All namespaces' (globally installed,) upon clicking the operator to view its details the user is taken into the details of that operator in installed namespace (project selector will switch to the install namespace.)

This can be disorienting then to look at the lists of custom resource instances and see them all blank, since the lists are showing instances only in the currently selected project (the install namespace) and not across all namespaces the operator is available in.

It is likely that making use of the new Operator resource will improve this experience (CONSOLE-2240,) though that may still be some releases away. it should be considered if it's worth a "short term" fix in the meantime.

Note: The informational alert was not implemented. It was decided that since "All namespaces" is displayed in the radio button, the alert was not needed.

During master nodes upgrade when nodes are getting drained there's currently no protection from two or more operands going down. If your component is required to be available during upgrade or other voluntary disruptions, please consider deploying PDB to protect your operands.

The effort is tracked in https://issues.redhat.com/browse/WRKLDS-293.

Example:

 

Acceptance Criteria:
1. Create PDB controller in console-operator for both console and downloads pods
2. Add e2e tests for PDB in single node and multi node cluster

 

Note: We should consider to backport this to 4.10

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Epic Goal

  • As an OpenShift infrastructure owner, I need to be able to integrate the installation of my first on-premises OpenShift cluster with my automation flows and tools.
  • As an OpenShift infrastructure owner, I must be able to provide the CLI tool with manifests that contain the definition of the cluster I want to deploy
  • As an OpenShift Infrastructure owner, I must be able to get the validation errors in a programmatic way
  • As an OpenShift Infrastructure owner, I must be able to get the events and progress of the installation in a programmatic way
  • As an OpenShift Infrastructure owner, I must be able to retrieve the kubeconfig and OpenShift Console URL in a programmatic way

Why is this important?

  • When deploying clusters with a large number of hosts and when deploying many clusters, it is common to require to automate the installations.
  • Customers and partners usually use third party tools of their own to orchestrate the installation.
  • For Telco RAN deployments, Telco partners need to repeatably deploy multiple OpenShift clusters in parallel to multiple sites at-scale, with no human intervention.

Scenarios

  1. Monitoring flow:
    1. I generate all the manifests for the cluster,
    2. call the CLI tool pointint to the manifests path,
    3. Obtain the installation image from the nodes
    4. Use my infrastructure capabilities to boot the image on the target nodes
    5. Use the tool to connect to assisted service to get validation status and events
    6. Use the tool to retrieve credentials and URL for the deployed cluster

Acceptance Criteria

  • Backward compatibility between OCP releases with automation manifests (they can be applied to a newer version of OCP).
  • Installation progress and events can be tracked programatically
  • Validation errors can be obtained programatically
  • Kubeconfig and console URL can be obtained programatically
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

References

User Story:

As a deployer, I want to be able to:

  • Get the credentials for the cluster that is going to be deployed

so that I can achieve

  • Checking the installed cluster for installation completion
  • Connect and administer the cluster that gets installed

 

Currently the Assisted Service generates the credentials by running the ignition generation step of the oepnshift-installer. This is why the credentials are only retrievable from the REST API towards the end of the installation.

In the BILLI usage, which takes down assisted service before the installation is complete there is no obvious point at which to alert the user that they should retrieve the credentials. This means that we either need to:

  • Allow the user to pass the admin key that will then get signed by the generated CA and replace the key that is made by openshift-installer (would mean new functionality in AI)
  • Allow the key to be retrieved by SSH with the fleeting command from the node0 (after it has generated). The command should be able to wait until it is possible
  • Have the possibility to POST it somewhere

Acceptance Criteria:

  • The admin key is generated and usable to check for installation completeness

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Feature Overview

Customers are asking for improvements to the upgrade experience (both over-the-air and disconnected). This is a feature tracking epics required to get that work done.  

Goals

  1. Have an option to do upgrades in more discrete steps under admin control. Specifically, these steps are: 
    • Control plane upgrade
    • Worker nodes upgrade
    • Workload enabling upgrade (i..e. Router, other components) or infra nodes
  2. Better visibility into any errors during the upgrades and documentation of what they error means and how to recover. 
  3. An user experience around an end-2-end back-up and restore after a failed upgrade 
  4. OTA-810  - Better Documentation: 
    • Backup procedures before upgrades. 
    • More control over worker upgrades (with tagged pools between user Vs admin)
    • The kinds of pre-upgrade tests that are run, the errors that are flagged and what they mean and how to address them. 
    • Better explanation of each discrete step in upgrades, and what each CVO Operator is doing and potential errors, troubleshooting and mitigating actions.

References

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Provide a one click option to perform an upgrade which pauses all non master pools

Why is this important?

  • Customers are increasingly asking that the overall upgrade is broken up into more digestible pieces
  • This is the limit of what's possible today
    • R&D work will be done in the future to allow for further bucketing of upgrades into Control Plane, Worker Nodes, and Workload Enabling components (ie: router) That will however take much more consideration and rearchitecting

Scenarios

  1. An admin selecting their upgrade is offered two options "Upgrade Cluster" and "Upgrade Control Plane"
    1. If the admin selects Upgrade Cluster they get the pre 4.10 behavior
    2. If the admin selects Upgrade Control Plane all non master pools are paused and an upgrade is initiated
  1. A tooltip should clarify what the difference between the two are
  2. The pool progress bars should indicate pause/unpaused status, non master pools should allow for unpausing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

  1. While this epic doesn't specifically target upgrading from 4.N to 4.N+1 to 4.N+2 with non master pools paused it would fundamentally enable that and it would simplify the UX described in Paused Worker Pool Upgrades

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Goal
Improve the UX on the machine config pool page to reflect the new enhancements on the cluster settings that allows users to select the ability to update the control plane only.

Background
Currently in the console, users only have the ability to complete a full cluster upgrade. For many customers, upgrades take longer than what their maintenance window allows. Users need the ability to upgrade the control plane independently of the other worker nodes. 

Ex. Upgrades of huge clusters may take too long so admins may do the control plane this weekend, worker-pool-A next weekend, worker-pool-B the weekend after, etc.  It is all at a pool level, they will not be able to choose specific hosts.

Requirements

  1. Changes to the table:
    1. Remove "Updated, updating and paused" columns. We could also consider adding column management to this table and hide those columns by default.
    2. Add "Update status" as a column, and surface the same status on cluster settings. Not true or false values but instead updating, paused, and up to date.
    3. Surface the update action in the table row.
  2. Add an inline alert that lets users know there is a 60 day window to update all worker pools. In the alert, include the sentiment that worker pools can remain paused as long as is normally safe, which means until certificate rotation becomes critical which is at about 60 days. The admin would be advised to unpause them in order to complete the full upgrade. If the MCPs are paused, the certification rotation does not happen, which causes the cluster to become degraded and causes failure in multiple 'oc' commands, including but not limited to 'oc debug', 'oc logs', 'oc exec' and 'oc attach'. (Are we missing anything else here?) Add the same alert logic to this page as the cluster settings:
    1. From day 60 to day 10 use the default inline alert.
    2. From day 10 to day 3 use the warning inline alert.
    3. From day 3 to 0 use the critical alert and continue to persist until resolved.

Design deliverables: 

Goal
Add the ability to choose between a full cluster upgrade (which exists today) or control plane upgrade (which will pause all worker pools) in the console.

Background
Currently in the console, users only have the ability to complete a full cluster upgrade. For many customers, upgrades take longer than what their maintenance window allows. Users need the ability to upgrade the control plane independently of the other worker nodes. 

Ex. Upgrades of huge clusters may take too long so admins may do the control plane this weekend, worker-pool-A next weekend, worker-pool-B the weekend after, etc.  It is all at a pool level, they will not be able to choose specific hosts.

Requirements

  1. Changes to the Update modal:
    1. Add the ability to choose between a cluster upgrade and a control plane upgrade (the design does not default to a selection but rather disables the update button to force the user to make a conscious decision)
    2. link out to documentation to learn more about update strategies
  2. Changes to the in progress check list:
    1. Add a status above the worker pool section to let users know that all worker pools are paused and an action to resume all updates
    2. Add a "resume update" button for each worker pool entry
  3. Changes to the update status:
    1. When all master pools are updated successfully, change the status from what we have today "Up to date" to something like "Control plane up to date - all worker pools paused"
  4. Add an inline alert that lets users know there is a 60 day window to update all worker pools. In the alert, include the sentiment that worker pools can remain paused as long as is normally safe, which means until certificate rotation becomes critical which is at about 60 days. The admin would be advised to unpause them in order to complete the full upgrade. If the MCPs are paused, the certification rotation does not happen, which causes the cluster to become degraded and causes failure in multiple 'oc' commands, including but not limited to 'oc debug', 'oc logs', 'oc exec' and 'oc attach'. (Are we missing anything else here?) Inline alert logic:
    1. From day 60 to day 10 use the default alert.
    2. From day 10 to day 3 use the warning alert.
    3. From day 3 to 0 use the critical alert and continue to persist until resolved.

Design deliverables: 

Feature Overview

Enable sharing ConfigMap and Secret across namespaces

Requirements

Requirement Notes isMvp?
Secrets and ConfigMaps can get shared across namespaces   YES

Questions to answer…

NA

Out of Scope

NA

Background, and strategic fit

Consumption of RHEL entitlements has been a challenge on OCP 4 since it moved to a cluster-based entitlement model compared to the node-based (RHEL subscription manager) entitlement mode. In order to provide a sufficiently similar experience to OCP 3, the entitlement certificates that are made available on the cluster (OCPBU-93) should be shared across namespaces in order to prevent the need for cluster admin to copy these entitlements in each namespace which leads to additional operational challenges for updating and refreshing them. 

Documentation Considerations

Questions to be addressed:
 * What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
 * Does this feature have doc impact?
 * New Content, Updates to existing content, Release Note, or No Doc Impact
 * If unsure and no Technical Writer is available, please contact Content Strategy.
 * What concepts do customers need to understand to be successful in [action]?
 * How do we expect customers will use the feature? For what purpose(s)?
 * What reference material might a customer want/need to complete [action]?
 * Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
 * What is the doc impact (New Content, Updates to existing content, or Release Note)?

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Require volumes that use the Shared Resources CSI driver to specify readOnly: true in order to create the pod
  • Reserve the "openshift-" prefix for SharedSecrets and SharedConfigMaps, such that these resources can only be created by OpenShift operators. We must do this while the driver is tech preview.

Why is this important?

  • readOnly: true must be specified in order for the driver to mount the volume correctly. If this is not set, the volume mount is rejected and the pod will be stuck in a Pending/Initializing state.
  • A validating admission webhook will ensure that the pods won't be created in such a state, improving user experience.
  • Openshift operators may want/need to create SharedSecrets and SharedConfigMaps so they can be used as system level resources. For example, Insights Operator can automatically create a SharedSecret for the Simple Content Access cert.

Scenarios

  1. As a developer, I want to consume shared Secrets and ConfigMaps in my workloads so that I can have access to shared credentials and configuration.
  2. As a cluster admin, I want the Insights operator to automatically create a SharedSecret for my cluster's simple content access certificate.
  3. As a cluster admin/SRE, I want OpenShift to use SharedConfigMaps to distribute cluster certificate authorities so that data is not duplicated in ConfigMaps across my cluster.

Acceptance Criteria

  • Pods must have readOnly: true set to use the shared resource CSI Driver - admission should be rejected if this is not set.
  • Documentation updated to reflect this requirement.
  • Users (admins?) are not allowed to create SharedSecrets or SharedConfigMaps with the "openshift-" prefix.

Dependencies (internal and external)

  1. ART - to create payload image for the webhook
  2. Arch review for the enhancement proposal (Apiserver/control plane team)

Previous Work (Optional):

  1. BUILD-293 - Shared Resources tech preview

Open questions::

  1. From email exchange with David Eads:  "Thinking ahead to how we'd like to use this in builds once we're GA, are we likely to choose openshift-etc-pki-entitlement as one of our well-known names?  If we do, what sort of validation (if any) would we like to provide on the backing secret and does that require any new infrastructure?"

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As an OpenShift engineer,
I want to initialize a validating admission webhook for the shared resource CSI driver
So that I can eventually require readOnly: true to be set on all pods that use the Shared Resource CSI Driver

Acceptance Criteria

  • Container image created in CI which builds a "hello world" binary for the future validating webhook.
  • ART sets up downstream build process for the image.

QE Impact

None.

Docs Impact

None.

PX Impact

None.

Notes

This is a prerequisite for implementing the validating admission webhook.
We need to have ART build the container image downstream so that we can add the correct image references for the CVO.
If we reference images in the CVO manifests which do not have downstream counterparts, we break the downstream build for the payload.

CI is capable of producing multiple images for a GitHub repository. For example, github.com/openshift/oc produces 4-5 images with various capabilities.

We did similar work in BUILD-234 - some of these steps are not required.

See also:

User Story

As a developer using SharedSecrets and ConfigMaps
I want to ensure all pods set readOnly; true on admission
So that I don't have pods stuck in the "Pending" state because of a bad volume mount

Acceptance Criteria

  • Pods which reference the Shared Resource CSI driver must set readOnly: true on admission.
  • If readOnly: true is not set, or is set to false, the pod should not be created.
  • Appropriate testing in place to verify behavior

QE Impact

QE will need to verify the new Pod Admission behavior

Docs Impact

Docs will need to ensure that readOnly: true is required and must be set to true.

PX Impact

None.

QE testing/verification of the feature - require readOnly to be true

Actions:

1. Create smoke test and submit to GitHub
2. Run script to integrate smoke test with Polarion

User Story

As an OpenShift engineer
I want the shared resource CSI Driver webhook to be installed with the cluster storage operator
So that the webhook is deployed when the CSI driver is deployed

Acceptance Criteria

  • Shared Resource CSI Driver operator deploys the webhook alongside the CSI driver
  • Cluster storage operator is updated if needed to deploy the shared resource CSI driver webhook.

Docs Impact

None - no new functional capabilities will be added

QE Impact

None - we can verify in CI that we are deploying the webhook correctly.

PX Impact

None - no new functional capabilities will be added

Notes

The scope of this story is to just deploy the "hello world" webhook with the Cluster Storage Operator.
Adding the live ValidatingWebhook configuration and service will be done in a separate story.

Goal

Increase integration of Shipwright, Tekton, Argo CD in OpenShift GitOps with OpenShift platform and related products such as ACM.

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Add telemetry so that we know how image stream features are used.

Why is this important?

  • We have a long standing epic to create image streams v2. We need to better understand how image streams are used today.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Epic Goal

  • Remove this UI from our stack that we cannot support.

Why is this important?

  • Reduce support burden.
  • Remove Bugzilla burden of addressing continuous CVEs found in this project.

Acceptance Criteria

  • All Prometheus upstream UI links are removed
  • Related documentation is updated
  • Ports/routes etc configured to expose access to this UI are removed such that no configuration we provide enables access to this UI or its codepaths.
  • There is no reason any CVEs found in this UI would ever require intervention by the Monitoring Team.

Dependencies (internal and external)

  1. Make the Prometheus Targets information available in Console UI (https://issues.redhat.com/browse/MON-1079)

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

After installing or upgrading to the latest OCP version, the existing OpenShift route to the prometheus-k8s service is updated to be a path-based route to '/api/v1'.

DoD:

  • It is not possible to access the Prometheus UI via the OpenShift route
  • Using a bearer token with sufficient permissions, it is possible to access the /api/v1/* endpoints via the OpenShift route.

Problem:

This epic is mainly focused on the 4.10 Release QE activities

Goal:

1. Identify the scenarios for automation
2. Segregate the test Scenarios into smoke, Regression and other user stories
a. Update the https://docs.jboss.org/display/ODC/Automation+Status+Report
3. Align with layered operator teams for updating scripts
3. Work closely with dev team for epic automation
4. Create the automation scripts using cypress
5. Implement CI for nightly builds
6. Execute scripts on sprint basis

Why is it important?

To the track the QE progress at one place in 4.10 Release Confluence page

Use cases:

  1. <case>

Acceptance criteria:

  1. <criteria>

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Acceptance criteria:

  1. Execute the automation scripts on ODC nightly builds in OpenShift CI (prow) periodically
  2. provide a separate job for each "plugin" (like pipelines, knative, etc.)

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Summary (PM+lead)

https://issues.redhat.com/browse/AUTH-2 revealed that, in prinicipal, Pod Security Admission is possible to integrate into OpenShift while retaining SCC functionality.

 

This epic is about the concrete steps to enable Pod Security Admission by default in OpenShift

Motivation (PM+lead)

Goals (lead)

  • Enable Pod Security Admission in "restricted" policy level by default
  • Migrate existing core workloads to comply to the "restricted" pod security policy level

Non-Goals (lead)

  • Other OpenShift workloads must be migrated by the individual responsible teams.

Deliverables

Proposal (lead)

Enhancement - https://github.com/openshift/enhancements/pull/1010

User Stories (PM)

Dependencies (internal and external, lead)

Previous Work (lead)

Open questions (lead)

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ingress-operator must comply to pod security. The current audit warning is:

 

{   "objectRef": "openshift-ingress-operator/deployments/ingress-operator",   "pod-security.kubernetes.io/audit-violations": "would violate PodSecurity \"restricted:latest\": allowPrivilegeEscalation != false (containers \"ingress-operator\", \"kube-rbac-proxy\" must set securityContext.allowPrivilegeEscalation=false), unrestricted capabilities (containers \"ingress-operator\", \"kube-rbac-proxy\" must set securityContext.capabilities.drop=[\"ALL\"]), runAsNonRoot != true (pod or containers \"ingress-operator\", \"kube-rbac-proxy\" must set securityContext.run AsNonRoot=true), seccompProfile (pod or containers \"ingress-operator\", \"kube-rbac-proxy\" must set securityContext.seccompProfile.type to \"RuntimeDefault\" or \"Localhost\")" }

dns-operator must comply to restricted pod security level. The current audit warning is:

{   "objectRef": "openshift-dns-operator/deployments/dns-operator",   "pod-security.kubernetes.io/audit-violations": "would violate PodSecurity \"restricted:latest\": allowPrivilegeEscalation != false (containers \"dns-operator\", \"kube-rbac-proxy\" must set securityContext.allowPrivilegeEscalation=false), unre stricted capabilities (containers \"dns-operator\", \"kube-rbac-proxy\" must set securityContext.capabilities.drop=[\"ALL\"]), runAsNonRoot != true (pod or containers \"dns-operator\", \"kube-rbac-proxy\" must set securityContext.runAsNonRoot=tr ue), seccompProfile (pod or containers \"dns-operator\", \"kube-rbac-proxy\" must set securityContext.seccompProfile.type to \"RuntimeDefault\" or \"Localhost\")" }

Epic Goal

HyperShift provisions OpenShift clusters with externally managed control-planes. It follows a slightly different process for provisioning clusters. For example, HyperShift uses cluster API as a backend and moves all the machine management bits to the management cluster.  

Why is this important?

showing machine management/cluster auto-scaling tabs in the console is likely to confuse users and cause unnecessary side effects. 

Definition of Done

  • MachineConfig and MachineConfigPool should not be present, they should be either removed or hidden when the cluster is spawned using HyperShift. 
  • Cluster Settings show say the control plane is externally managed and be read-only.
  • Cluster Settings -> Configuration resources should be read-only, maybe hide the tab
  • Some resources should go in an allowlist. Most will be hidden
  • Review getting started steps

See Design Doc: https://docs.google.com/document/d/1k76JtRRHBdCCEjHPqKcYvbNVsuaGmRhWDLESWIm0mbo/edit#

 

Setup / Testing

It's based on the SERVER_FLAG controlPlaneTopology being set to External is really the driving factor here; this can be done in one of two ways:

  • Locally via a Bridge Variable, export BRIDGE_CONTROL_PLANE_TOPOLOGY_MODE="External"
  • Locally / OnCluster via modifying the window.SERVER_FLAGS.controlPlaneTopology to External in the dev tools

To test work related to cluster upgrade process, use a 4.10.3 cluster set on the candidate-4.10 upgrade channel using 4.11 frontend code.

If the Infrastructure.Status.ControlPlaneTopology is set to 'External', the console-operator will pass this information via the console-config.yaml to the console. Console pod will get re-deployed and will store the topology mode information as a SERVER_FLAG. Based on that value we need to suspend these notifications:

  • cluster upgrade notifications
  • new channel available notifications

For these we will need to check `ControlPlaneTopology`, if it's set to 'External' and also check if the user can edit cluster version(either by creating a hook or an RBAC call, eg. `canEditClusterVersion`)

 

Check section 05 for more info: https://docs.google.com/document/d/1k76JtRRHBdCCEjHPqKcYvbNVsuaGmRhWDLESWIm0mbo/edit#

If the Infrastructure.Status.ControlPlaneTopology is set to 'External', the console-operator will pass this information via the console-config.yaml co the console. Console pod will get re-deployed and will store the topology mode information as a SERVER_FLAG. Based on that value we need surface a message that the control plane is externally managed and add following changes:

  • Remove update button
  • Make channel read only
  • Link out to read only CV details page
  • Remove the ability to edit upstream configuration
  • Remove the cluster autoscaler field
  • Add an alert to the page so that users know the control plane is externally managed

In general, anything that changes a cluster version should be read only.

Check section 02 for more info: https://docs.google.com/document/d/1k76JtRRHBdCCEjHPqKcYvbNVsuaGmRhWDLESWIm0mbo/edit#

 

Based on Cesar's comment we should be removing the `Control Plane` section, if the infrastructure.status.controlplanetopology being "External".

If the Infrastructure.Status.ControlPlaneTopology is set to 'External', the console-operator will pass this information via the console-config.yaml co the console. Console pod will get re-deployed and will store the topology mode information as a SERVER_FLAG. Based on that value we need to remove the ability to “Add identity providers” under “Set up your Cluster”. In addition to the getting started card, we should remove the ability to update a cluster on the details card when applicable (anything that changes a cluster version should be read only).

Summary of changes to the overview page:

  • Remove the ability to “Add identify providers” under “Set up your Cluster”
  • Remove cluster update CTA from the details card
  • Remove update alerts from the status card

Check section 03 for more info: https://docs.google.com/document/d/1k76JtRRHBdCCEjHPqKcYvbNVsuaGmRhWDLESWIm0mbo/edit#

If the Infrastructure.Status.ControlPlaneTopology is set to 'External', the console-operator will pass this information via the console-config.yaml to the console. Console pod will get re-deployed and will store the topology mode information as a SERVER_FLAG. Based on that value we need to suspend kubeadmin notifier, from the global notifications, since it contain link for updating the cluster OAuth configuration (see attachment).

 

 

Epic Goal

Why is this important?

  • So the UX satisfies the current trands, where dark mode is becoming a standard for modern services.  

Acceptance Criteria

  • OCP admin console must be rendered in a preferred mode based on `prefers-color-scheme` media query
  • OCP admin console must be rendered in a preferred mode selected in the User Setting page
  • Create an followup epic/story for and listing and tracking changes needed in OCP console's dynamic plugins

Dependencies (internal and external)

  1. PatternFly - Dark mode PF variables

Previous Work (Optional):

  1. Mike Coker has worked on a POC from the PF point of view on both the admin and dev console, and the screenshot results are listed below along with the repo branch. Also listed is a document covering some of the common issues found when putting together the admin console POC. https://github.com/mcoker/console/tree/dark-theme
    Background POC work completed for reference:

PatternFly Dark Theme Handbookhttps://docs.google.com/document/d/1mRYEfUoOjTsSt7hiqjbeplqhfo3_rVDO0QqMj2p67pw/edit

Admin Console -> Workloads & Pods

Dev Console -> Gotcha pages: Observe Dashboard and Metrics, Add, Pipelines: builder, list, log, and run

Open questions::

  1. Who should be responsible for updating DynamicPlugins to be able to render in dark mode?

As a developer, I want to be able to scope the changes needed to enable dark mode for the admin console. As such, I need to investigate how much of the console will display dark mode using PF variables and also define a list of gotcha pages/components which will need special casing above and beyond PF variable settings.

 

Acceptance criteria:

As a developer, I want to be able to fix remaining issues from the spreadsheet of issues generated after the initial pass and spike of adding dark theme to the console.. As such, I need to make sure to either complete all remaining issues for the spreadsheet, or, create a bug or future story for any remaining issues in these two documents.

 

Acceptance criteria:

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

The Cluster Dashboard Details Card Protractor integration test was failing at high rate, and despite multiple attempts to fix, was never fully resolved, so it was disabled as a way to fix https://bugzilla.redhat.com/show_bug.cgi?id=2068594. Migrating this entire file to Cypress should give us better debugging capability, which is what was done to fix a similarly problematic project dashboard Protractor test.

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

Currently, enabled plugins can fail to load for a variety of reasons. For instance, plugins don't load if the plugin name in the manifest doesn't match the ConsolePlugin name or the plugin has an invalid codeRef. There is no indication in the UI that something has gone wrong. We should explore ways to report this problem in the UI to cluster admins. Depending on the nature of the issue, an admin might be able to resolve the issue or at least report a bug against the plugin.

The message about failing could appear in the notification drawer and/or console plugins tab on the operator config. We could also explore creating an alert if a plugin is failing.

 

AC:

  • Add notification into the Notification Drawer in case a Dynamic Plugin will error out during load.
  • Render these errors in the status card, notification section, as well.
  • For each failed plugin we should create a separate notification.

Currently, you need to navigate to

Cluster Settings ->
Global configuration ->
Console (operator) config ->
Console plugins

to see and managed plugins. This takes a lot of clicks and is not discoverable. We should look at surfacing plugin details where they're easier to find – perhaps on the Cluster Settings page – or at least provide a more convenient link somewhere in the UI.

AC: Add the Dynamic Plugins section to the Status Card in the overview that will contain:

  • count of active and non-active plugins
  • link to the ConsolePlugins instances page
  • status of the loaded plugins and breakout error

cc Ali Mobrem Robb Hamilton

In the 4.11 release, a console.openshift.io/default-i18next-namespace annotation is being introduced. The annotation indicates whether the ConsolePlugin contains localization resources. If the annotation is set to "true", the localization resources from the i18n namespace named after the dynamic plugin (e.g. plugin__kubevirt), are loaded. If the annotation is set to any other value or is missing on the ConsolePlugin resource, localization resources are not loaded. 

 

In case these resources are not present in the dynamic plugin, the initial console load will be slowed down. For more info check BZ#2015654

 

AC:

  • console-operator should be checking for the new console.openshift.io/use-i18n annotation, update the console-config.yaml accordingly and redeploy the console server
  • console server should pick up the changes in the console-config.yaml and only load the i18n namespace that are available

 

Follow up of https://issues.redhat.com/browse/CONSOLE-3159

 

 

We need to provide a base for running integration tests using the dynamic plugins. The tests should initially

  • Create a deployment and service to run the dynamic demo plugin
  • Update the console operator config to enable the plugin
  • Wait for the plugin to be available
  • Test at least one extension point used by the plugin (such as adding items to the nav)
  • Disable the plugin when done

Once the basic framework is in place, we can update the demo plugin and add new integration tests when we add new extension points.

https://github.com/openshift/console/tree/master/frontend/dynamic-demo-plugin

 

https://github.com/openshift/enhancements/blob/master/enhancements/console/dynamic-plugins.md

 

https://github.com/openshift/console/tree/master/frontend/packages/console-plugin-sdk

We have a Timestamp component for consistent display of dates and times that we should expose through the SDK. We might also consider a hook that formats dates and times for places were you don't want or cant use the component, eg. times on a chart. 

This will become important when we add a user preference for dates so that plugins show consistent dates and times as console. If I set my user preference to UTC dates, console should show UTC dates everywhere.

 

AC:

  • Expose the Timestamp component inside the SDK. 
  • Replace the connect with useSelector hook
  • Keep the original component and proxy it to the new one in the SDK

 

 

 

cc Jakub Hadvig Sho Weimer 

Goal

  • Add the ability for users to select supported but not recommended updates.
  • Refine workflow when both "upgradeable=false" and "supported-but-not-recommended" updates occur

Background
RFE: for 4.10, Cincinnati and the cluster-version operator are adding conditional updates (a.k.a. targeted edge blocking): https://issues.redhat.com/browse/OTA-267

High-level plans in https://github.com/openshift/enhancements/blob/master/enhancements/update/targeted-update-edge-blocking.md#update-client-support-for-the-enhanced-schema

Example of what the oc adm upgrade UX will be in https://github.com/openshift/enhancements/blob/master/enhancements/update/targeted-update-edge-blocking.md#cluster-administrator.

The oc implementation landed via https://github.com/openshift/oc/pull/961.

Design

  • Use case 01: "supported but not recommended" occurs to the latest version:
    • Add an info icon next to the version on update path with a pop-over to explain about why updating to this version is supported, but not recommended and a link to known risks
    • Identify the difference in "recommended" versions, "supported but not recommended" versions, and "blocked" versions (upgradeable=false) in the + more modal.
    • The latest version is pre-selected in the dropdown in the update modal with an inline alert to inform users about supported-but-not-recommended version with link to known risks. Users can choose to update to another recommended versions, update to a supported-but-not-recommended one, or wait.
    • The "recommended" and "supported but not recommended" updates are separated in the dropdown.
    • If a user selects a "recommended" update, the inline alert disappears.
  • Use case 02: When both "upgradeable=false" and "supported but not recommended" occur:
    • Add an alert banner to explain why users shouldn’t update to the latest version and link to how to resolve on the cluster settings details page. Users have the options to resolve the issue, update to a patch version, or wait.
    • If users open the update modal without resolving the "upgradeable=false" issue, the next recommended version is pre-selected. An expandable link "View blocked versions (#)" is included under the dropdown to show "upgradeable=false" versions with resolve link.
    • If users resolve the "upgradeable=false" issue, the cluster settings page will change to use case 01
    • Question: Priority on changing the upgradeable=false alert banner in update modal and blocked versions in dropdown

See design doc: https://docs.google.com/document/d/1Nja4whdsI5dKmQNS_rXyN8IGtRXDJ8gXuU_eSxBLMIY/edit#

See marvel: https://marvelapp.com/prototype/h3ehaa4/screen/86077932

Update the cluster settings page to inform the user when the latest available update is supported but not recommended. Add an informational popover to the latest version in  update path visualization.

The "Update Version" modal on the cluster settings page should be updated to give users information about recommended, not recommended, and blocked update versions.

  • When the modal is opened, the latest recommended update version should be pre-selected in the version dropdown.
  • Blocked versions should no longer be displayed in the version dropdown, and should instead be displayed in a collapsible field below the dropdown.
  • When blocked versions are present, a link should be provided to the cluster operator tab. The version dropdown itself should have two labeled sections: "Recommended" and "Supported but not recommended".
  • When the user selects a "Supported but not recommended" item from the version dropdown, an inline info alert should appear below the version selection field and should provide a link to known risks associated with the selected version. This is an external link provided through the ClusterVersion API.

Epic Goal

  • Make the image registry distributed across availability zones.

Why is this important?

  • The registry should be highly available and zone failsafe.

Scenarios

  1. As an administrator I want to rely on a default configuration that spreads image registry pods across topology zones so that I don't suffer from a long recovery time (>6 mins) in case of a complete zone failure if all pods are impacted.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. Pod's topologySpreadConstraints

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: https://github.com/openshift/cluster-image-registry-operator/pull/730
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Story: As an administrator I want to rely on a default configuration that spreads image registry pods across topology zones so that I don't suffer from a long recovery time (>6 mins) in case of a complete zone failure if all pods are impacted.

Background: The image registry currently uses affinity/anti-affinity rules to spread registry pods across different hosts. However this might cause situations in which all pods end up on hosts of a single zone, leading to a long recovery time of the registry if that zone is lost entirely. However due to problems in the past with the preferred setting of anti-affinity rule adherence the configuration was forced instead with required and the rules became constraints. With zones as constraints the internal registry would not have deployed anymore in environments with a single zone, e.g. internal CI environment. Pod topology constraints is a new API that is supported in OCP which can also relax constraints in case they cannot be satisfied. Details here: https://docs.openshift.com/container-platform/4.7/nodes/scheduling/nodes-scheduler-pod-topology-spread-constraints.html

Acceptance criteria:

  • by default the internal registry is deployed with at least two replica
  • by default the topology constraints should be on a zone-basis, so that by defaults one registry pod is scheduled in each zone
  • when constraints can't be satisfied the registry should deploy anyway
  • we should not do this in SNO environments
  • the registry should still work on SNO environments

Open Questions:

  • what happens in environments where the storage is zone dependent?

Epic Goal

  • Update image registry dependencies (Kubernetes and OpenShift) to the latest versions.

Why is this important?

  • New versions usually bring improvements that are needed by the registry and help with getting updates for z-stream.

Scenarios

  1. As an OpenShift engineer, I want my components to use the versions of dependencies, so that they get fixes for known issues and can be easily updated in z-stream.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. Kubernetes 1.24

Previous Work (Optional):

  1. IR-210

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • QE - Test plans in Polarion: <link or reference to Polarion>

As a OpenShift engineer
I want image-registry to use the latest k8s libraries
so that image-registry can benefit from new upstream features.

Acceptance criteria

  • image-registry uses k8s.io/api v1.24.z
  • image-registry uses latest openshift/api, openshift/library-go, openshift/client-go
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As an OpenShift administrator
I want to provide the registry operator with a custom certificate authority for S3 storage
so that I can use a third-party S3 storage provider.

Acceptance criteria

  1. Users can specify a configmap name (from openshift-config) in config.imageregistry/cluster's spec.storage.s3.
  2. The operator uses CA from this configmap to check S3 bucket.
  3. The image registry pod uses CA from this configmap to access the S3 bucket.
  4. When a custom CA is defined, the operator/image-registry should still trust certificate authorities that are used by Amazon S3 and other well-known CAs.
  5. An end-to-end test that runs minio and checks the image registry becomes healthy with it.

Goal

Remove Jenkins from the OCP Payload.

Problem

  • Jenkins images are "non-trival in size, impact experience around OCP payloads
  • Security advisories cannot be handled once, but against all actively supported OCP releases, adding to response time for handling said advisories
  • Some customers may now want to upgrade Jenkins as OCP upgrades (making this configurable is more ideal)

Why is this important

  • This is an engineering motivated item to reduce costs so we have more cycles for strategic work
  • Aside from the team itself, top level OCP architects want this to reduce the image size, improve general OCP upgrade experience
  • Sends a mix message with respect to what is startegic CI/CI when Jenkins is baked into OCP, but Tekton/Pipelines is an add-on, day 2 install sort of thing

Dependencies (internal and external)

See epic linking - need alternative non payload image available to provide relatively seamless migration

 

Also, the EP for this is approved and merged at https://github.com/openshift/enhancements/blob/master/enhancements/builds/remove-jenkins-payload.md

Estimate (xs, s, m, l, xl, xxl):

Questions:

       PARTIAL ANSWER ^^:  confirmed with Ben Parees in https://coreos.slack.com/archives/C014MHHKUSF/p1646683621293839 that EP merging is currently sufficient OCP "technical leadership" approval.

 

Previous work

 

Customers

assuming none

User Stories

 

As maintainers of the OpenShift jenkins component, we need run Jenkins CI for PR testing against openshift/jenkins, openshift/jenkins-sync-plugin, openshift/jenkins-client-plugin, openshift/jenkins-openshift-login-plugin, using images built in the CI pipeline but not injected into CI test clusters via sample operator overriding the jenkins sample imagestream with the jenkins payload image.

 

As maintainers of the OpenShift Jenkins component, we need Jenkins periodics for the client and sync plugins to run against the latest non payload, CPaas image, promoted to CI's image locations on quay.io, for the current release in development.

 

As maintainers of the OpenShift Jenkins component, we need Jenkins related tests outside of very basic Jenkins Pipieline Strategy Build Config verification, removed from openshift-tests in OpenShift Origin, using a non-payload, CPaas image pertinent to the branch in question.

Acceptance criteria

  • all PR CI Tests do not utilize samples operator manipulation of the jenkins imagestream with the in payload image, but rather images including the PRs changes
  • all periodic CI Tests do not utilize samples operator manipulation of the jenkins imagestream with the in payload image, but rather CI promoted images for the current release pushed to quay.io

High Level, we ideally want to vet the new CPaas image via CI and periodics BEFORE we start changing the samples operator so that it does not manipulate the jenkins imagestream (our tests will override the samples operator override)

QE Impact

NONE ... QE should wait until JNKS-254

Docs Impact

NONE

PX Impact

 

NONE

Launch Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Notes

  • Our CSI shared resource experience will help us here
  • but the old IMAGE_FORMAT stuff is deprecated, and does not work well with step registry stuff
  • instead, we need to use https://docs.ci.openshift.org/docs/architecture/ci-operator/#dependency-overrides
  • Makefile level logic will use `oc tag` to update the jenkins imagestream created as part of samples to override the use of the in payload image with the image build by the PR, or for periodics, with what has been promoted to quay.io
  • Ultimately, CI step registry for capturing the `oc tag` update the imagestream logic is the probably end goal
  • JNKS-268 might change how we do periodics, but the current thought is to get existing periodics working with the CPaas image first

Possible staging

1) before CPaas is available, we can validate images generated by PRs to openshift/jenkins, openshift/jenkins-sync-plugin, openshift/jenkins-client-plugin by taking the image built by the image (where the info needed to get the right image from the CI registry is in the IMAGE_FORMAT env var) and then doing an `oc tag --source=docker <PR image ref> openshift/jenkins:2` to replace the use of the payload image in the jenkins imagestream in the openshift namespace with the PRs image

2) insert 1) in https://github.com/openshift/release/blob/master/ci-operator/step-registry/jenkins/sync-plugin/e2e/jenkins-sync-plugin-e2e-commands.sh and https://github.com/openshift/release/blob/master/ci-operator/step-registry/jenkins/client-plugin/tests/jenkins-client-plugin-tests-commands.sh where you test for IMAGE_FORMAT being set

3) or instead of 2) you update the Makefiles for the plugins to call a script that does the same sort of thing, see what is in IMAGE_FORMAT, and if it has something, do the `oc tag`

 

https://github.com/openshift/release/pull/26979 is a prototype of how to stick the image built from a PR and conceivably the periodics to get the image built from it and tag it into the jenkins imagestream in the openshift namespace in the test cluster

 

Epic Goal

  • Provide a dedicated dashboard for NVIDIA GPU usage visualization in the OpenShift Console.

Why is this important?

  • Customers that use GPUs in their clusters usually have the GPU workloads as the main purpose of their cluster. As such, it makes much more sense to have the details about the usage they are doing of GPGPU resources AND CPU/RAM rather than just CPU/RAM

Scenarios

  1. As an admin of a cluster dedicated to data science, I want to quickly find out how much of my very costly resources are currently in use and if things are getting queued due to lack of resources

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. The NVIDIA GPU Operator must export to prometheus the relevant data

Open questions::

  1. Will NVIDIA agree to these extra data exports in their GPU Operator?

I asked Zvonko Kaiser and he seemed open to it. I need to confirm with Shiva Merla

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Following up on https://issues.redhat.com/browse/MON-1320, we added three new CLI flags to Prometheus to apply different limits on the samples' labels. These new flags are available starting from Prometheus v2.27.0, which will most likely be shipped in OpenShift 4.9.

The limits that we want to look into for OCP are the following ones:

# Per-scrape limit on number of labels that will be accepted for a sample. If
# more than this number of labels are present post metric-relabeling, the
# entire scrape will be treated as failed. 0 means no limit.
[ label_limit: <int> | default = 0 ]

# Per-scrape limit on length of labels name that will be accepted for a sample.
# If a label name is longer than this number post metric-relabeling, the entire
# scrape will be treated as failed. 0 means no limit.
[ label_name_length_limit: <int> | default = 0 ]

# Per-scrape limit on length of labels value that will be accepted for a sample.
# If a label value is longer than this number post metric-relabeling, the
# entire scrape will be treated as failed. 0 means no limit.
[ label_value_length_limit: <int> | default = 0 ]

We could benefit from them by setting relatively high values that could only induce unbound cardinality and thus reject the targets completely if they happened to breach our constrainst.

DoD:

  • Being able to configure label scrape limits for UWM

Epic Goal

When users configure CMO to interact with systems outside of an OpenShift cluster, we want to provide an easy way to add the cluster ID to the data send.

Why is this important?

Technically this can be achieved today, by adding an identifying label to the remote_write configuration for a given cluster. The operator adding the remote_write integration needs to take care that the label is unique over the managed fleet of clusters. This however adds management complexity. Any given cluster already has a pseudo-unique datum, that can be used for this purpose.

  • Starting in 4.9 we support the Prometheus remote_write feature to send metric data to a storage integration outside of the cluster similar to our own Telemetry service.
  • In Telemetry we already use the cluster ID to distinguish the various clusters.
  • For users of remote_write this could add an easy way to add such distinguishing information.

Scenarios

  1. An organisation with multiple OpenShift clusters want to store their metric data centralized in a dedicated system and use remote_write in all their clusters to send this data. When querying their centralized storage, metadata (here a label) is needed to separate the data of the various clusters.
  2. Service providers who manage multiple clusters for multiple customers via a centralized storage system need distinguishing metadata too. See https://issues.redhat.com/browse/OSD-6573 for example

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Document how to use this feature

Dependencies (internal and external)

  1. none

Previous Work (Optional):

  1. none

Open questions::

  1.  

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Implementation proposal:

 

Expose a flag in the CMO configuration, that is false by default (keeps backward compatibility) and when set to true will add the _id label to a remote_write configuration. More specifically it will be added to the top of a remote_write relabel_config list via the replace action. This will add the label as expect, but additionally a user could alter this label in a later relabel config to suit any specific requirements (say rename the label or add additional information to the value).
The location of this flag is the remote_write Spec, so this can be set for individual remote_write configurations.

We currently use a sample app to e2e test remote write in CMO.
In order to test the addition of the cluster_id relabel config, we need to confirm that the metrics send actually have the expected label.
For this test we should use Prometheus as the remote_write target. This allows us to query the metrics send via remote write and confirm they have the expected label.

Add an optional boolean flag to CMOs definition of RemoteWriteSpec that if true adds an entry in the specs WriteRelabelConfigs list.

I went with adding the relabel config to all user-supplied remote_write configurations. This path has no risk for backwards compatibility (unless users use the {}tmp_openshift_cluster_id{} label, seems unlikely) and reduces overall complexity, as well as documentation complexity.

The entry should look like what is already added to the telemetry remote write config and it should be added as the first entry in the list, before any user supplied relabel configs.

Epic Goal

  • Offer the option to double the scrape intervals for CMO controlled ServiceMonitors in single node deployments
  • Alternatively automatically double the same scrape intervals if CMO detects an SNO setup

The potential target ServiceMonitors are:

  • kubelet
  • kube-state-metrics
  • node-exporter
  • etcd
  • openshift-state-metrics

Why is this important?

  • Reduce CPU usage in SNO setups
  • Specifically doubling the scrape interval is important because:
  1. we are confident that this will have the least chance to interfere with existing rules. We typically have rate queries over the last 2 minutes (no shorter time window). With 30 second scrape intervals (the current default) this gives us 4 samples in any 2 minute window. rate needs at least 2 samples to work, we want another 2 for failure tolerance. Doubling the scrape interval will still give us 2 samples in most 2 minute windows. If a scrape fails, a few rule evaluations might fail intermittently.
  2. We expect a measureable reduction of CPU resources (see previous work)

Scenarios

  1. RAN deployments (Telco Edge) are SNO deployments. In these setups a full CMO deployment is often not needed and the default setup consumes too many resources. OpenShift as a whole has only very limited CPU cycles available and too many cycles are spend on Monitoring

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Previous Work (Optional):

  1. https://issues.redhat.com/browse/MON-1569

Open questions:

  1. Whether doubling some scrape intervals reduces CPU usage to fit into the assigned budget

Non goals

  • Allow arbitrarily long scrape intervals. This will interfere with alert and recoring rules
  • Implement a global override to scrape intervals.

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, I want the topology view to be less cluttered as I doom out showing only information that I can discern and still be able to get a feel for the status of my project.

Acceptance Criteria

  1. When zoomed to 50% scale, all labels & decorators will be hidden. Label are shown when hovering over the node
  2. When zoomed to 30% scale, all labels, decorators, pod rings & icons will be hidden. Node shape remains the same, and background is either white, yellow or red. Background color is determined based on aggregate status of pods, alerts, builds and pipelines. Tooltip is available showing node name as well as the "things" which are attributing to the warning/error status.

Additional Details:

Description

As a user, I want to understand which service bindings connected a service to a component successfully or not. Currently it's really difficult to understand and needs inspection into each ServiceBinding resource (yaml).

Acceptance Criteria

  1. Show a status badge on the SB details page
  2. Show a Status field in the right column of the SB details page
  3. Show the Status field in the right column of the Topology side panel when a SB is selected
  4. Show an indicator in the Topology view which will help to differentiate when the service binding is in error state
  5. Define the available statuses & associated icons 🥴
    1. Connected
    2. Error
  6. Error states defined by the SB conditions … if any of these 3 are not True, the status will be displayed as Error

Additional Details:

See also https://docs.google.com/document/d/1OzE74z2RGO5LPjtDoJeUgYBQXBSVmD5tCC7xfJotE00/edit

Goal:

This epic covers a number of customer requests(RFEs) as well as increases usability.

Why is it important?

Customer satisfaction as well as improved usability.

Acceptance Criteria

  1. Allow user to re-arrange the resources which have ben added to nav by the user
  2. Improved user experience (form based experience)
    1. Form based editing of Routes
    2. Form based creation and editing of Config Maps
    3. Form base creation of Deployments
  3. Improved discovery
    1. Include Share my project on the Add page to increase discoverability
    2. NS Helm Chart Repo
      1. Add tile to Add page for discoverability
      2. Provide a form driven creation experience
      3. User should be able to switch back and forth from Form/YAML
      4. change the intro text to the below & have the link in the intro text bring up the full page form
        1. Browse for charts that help manage complex installations and upgrades. Cluster administrators can customize the content made available in the catalog. Alternatively, developers can try to configure their own custom Helm Chart repository.

Dependencies (External/Internal):

None

Exploration:

Miro board from Epic Exploration

Description

As a user, I should be able to switch between the form and yaml editor while creating the ProjectHelmChartRepository CR.

Acceptance Criteria

  1. Convert the create form into a form-yaml switcher
  2. Display this form-yaml view in Search -> ProjectHelmChartRepositories in both perspectives

Additional Details:

Form component https://github.com/openshift/console/pull/11227

Description

As a user, I want to use a form to create Deployments

Acceptance Criteria

  1. Use existing edit Deployment form component for creating Deployments
  2. Display the form when clicked on `Create Deployment` in the Deployments Search page in the Dev perspective
  3. The `Create Deployment` button in the Deployments list page & the search page in the Admin perspective should have a similar experience.

Additional Details:

Edit deployment form ODC-5007

Problem:

Currently we are only able to get limited telemetry from the Dev Sandbox, but not from any of our managed clusters or on prem clusters.

Goals:

  1. Enable gathering segment telemetry whenever cluster telemetry is enabled on OSD clusters
  2. Have our OSD clusters opt into telemetry by default
  3. Work with PM & UX to identify additional metrics to capture in addition to what we have enabled currently on Sandbox.
  4. Ability to get a single report from woopra across all of our Sandbox and OSD clusters.
  5. Be able to generate a report including metrics of a single cluster or all clusters of a certain type ( sandbox, or OSD)

Why is it important?

In order to improve properly analyze usage and the user experience, we need to be able to gather as much data as possible.

Acceptance Criteria

  1. Extend console backend (bridge) to provide configuration as SERVER_FLAGS
    // JS type
    telemetry?: Record<string, string>
    
    1. Read the annotation of the cluster ConfigMap for telemetry data and pass them into the internal serverconfig.
    2. Pass through this internal serverconfig and export it as SERVER_FLAGS.
    3. Add a new --telemetry CLI option so that the telemetry options could be tested in a dev environment:
      ./bin/bridge --telemetry SEGMENT_API_KEY=a-key-123-xzy
      ./bin/bridge --telemetry CONSOLE_LOG=debug
      
  2. TBD: In best case the new annotation could be read from the cluster ConfigMap...
    1. Otherwise update the console-operator to pass the annotation from the console cluster configuration to the console ConfigMap.

Additional Details:

  1. More information about the integration with the backend could be found in the Telemetry on OSD clusters Google Doc

Goal:
Enhance oc adm release new (and related verbs info, extract, mirror) with heterogeneous architecture support

tl;dr

oc adm release new (and related verbs info, extract, mirror) would be enhanced to optionally allow the creation of manifest list release payloads. The manifest list flow would be triggered whenever the CVO image in an imagestream was a manifest list. If the CVO image is a standard manifest, the generated release payload will also be a manifest. If the CVO image is a manifest list, the generated release payload would be a manifest list (containing a manifest for each arch possessed by the CVO manifest list).

In either case, oc adm release new would permit non-CVO component images to be manifest or manifest lists and pass them through directly to the resultant release manifest(s).

If a manifest list release payload is generated, each architecture specific release payload manifest will reference the same pullspecs provided in the input imagestream.

 

More details in Option 1 of https://docs.google.com/document/d/1BOlPrmPhuGboZbLZWApXszxuJ1eish92NlOeb03XEdE/edit#heading=h.eldc1ppinjjh

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

1. Proposed title of this feature request
--> Alert generation when the etcd container memory consumption goes beyond 90%

2. What is the nature and description of the request?
--> When the etcd database starts growing rapidly due to some high number of objects like secrets, events, or configmap generation by application/workload, the memory and CPU consumption of APIserver and etcd container (control plane component) spikes up and eventually the control plane nodes goes to hung/unresponsive or crash due to out of memory errors as some of the critical processes/services running on master nodes get killed. Hence we request an alert/alarm when the ETCD container's memory consumption goes beyond 90% so that the cluster administrator can take some action before the cluster/nodes go unresponsive.

I see we already have a etcdExcessiveDatabaseGrowth Prometheus rule which helps when the surge in etcd writes leading to a 50% increase in database size over the past four hours on etcd instance however it does not consider the memory consumption:

$ oc get prometheusrules etcd-prometheus-rules -o yaml|grep -i etcdExcessiveDatabaseGrowth -A 9

  • alert: etcdExcessiveDatabaseGrowth
    annotations:
    description: 'etcd cluster "{{ $labels.job }}": Observed surge in etcd writes
    leading to 50% increase in database size over the past four hours on etcd
    instance {{ $labels.instance }}, please check as it might be disruptive.'
    expr: |
    increase(((etcd_mvcc_db_total_size_in_bytes/etcd_server_quota_backend_bytes)*100)[240m:1m]) > 50
    for: 10m
    labels:
    severity: warning

3. Why does the customer need this? (List the business requirements here)
--> Once the etcd memory consumption goes beyond 90-95% of total ram as it's system critical container, the OCP cluster goes unresponsive causing revenue loss to business and impacting the productivity of users of the openshift cluster. 

 

4. List any affected packages or components.
--> etcd

[Updated story request]

Decision is to always display Red Hat OpenShift logo for OCP instead of conditionally. And also update the OCP login, errors, providers templates. https://openshift.github.io/oauth-templates/

Related note in comments.

 

[Original request]

If the ACM or the ACS dynamic plugin is enabled and there is not a custom branding set, then the default "Red Hat Openshift" branding should be shown.

This was identified as an issue during the Hybrid Console Scrum on 11/15/20201

 

PRs associated with this change

https://github.com/openshift/console/pull/10940 [merged]

https://github.com/openshift/oauth-templates/pull/20 [merged]

https://github.com/openshift/cluster-authentication-operator/pull/540 [merged]

 

 

The two modules that are auto generated for the CLI docs need to add ":_content-type: REFERENCE" to the top of the files. Update the doc generation templates to add these.

Other Incomplete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were not completed when this image was assembled

When running yarn dev, type warnings can be seen in the console and in the dev overlay UI. These need to be resolved.